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• Supplementary Methods Table 4. miRNA Annotation Priorities 
• Supplementary Methods Table 5. Homopolymer runs in genes related to colorectal 

carcinoma 
• Supplementary Methods Figures 1-17.  

 
 
Supplementary Tables 

• Supplementary Table 1.  Data generation platforms, clinical data, and pathway 
alteration status for all samples.  Worksheet 1: Columns B-I indicate the different 
platforms that were run on each sample (1 = the samples was analyzed by that platform, 
0 = not analyzed). Column J marks the samples with complete data (Sequencing, aCGH, 
methylation and microarray expression, as used in the integrated analysis). The table 
also contains mutation rates for all samples, cluster assignments from various analyses, 
as well as clinical data. The additional worksheets contain information on the exact 
TCGA aliquot IDs used in each analysis. The last worksheet contains details of pathway 
alterations for each sample. 

• Supplementary Table 2.  Somatic mutations. Worksheet 1: All 90,059 somatic 
mutations in coding-regions identified in 224 tumor samples. Worksheet 2: Manually 
identified frameshift mutations in homopolymer regions. Worksheet 3: PIK3CA mutations 
identified from RNA-Seq data. Worksheet 4: Manually identified mutations in APC. 
Validation_Status designates whether a given mutation was observed in a second 
sequencing reaction from the same tumor DNA sample, using an alternative sequencing 
platform. Values in this column may be Valid—the mutation was seen by a second 
sequencing reaction; Wildtype—the mutation failed to be observed in a second 
sequencing reaction; Unknown—the mutation has not been resequenced.   
Validation_Method gives the alternative method used to validate the mutations. Values 
may be Illumina--signifies a capture and resequencing on Illumina;  SOLiD—capture and 
resequencing on SOLiD;  454_PCR_WGA—paired primers amplify a small region 
containing the mutation, amplicons are pooled and sequenced on a 454 instrument; 
Sanger_PCR_WGA—paired primers amplify a small region containing the mutations, 
amplicons are sequenced individually by Sanger. 

• Supplementary Table 3.  Significantly mutated genes identified by the MutSig algorithm. 
Worksheet 1: Significance scores in hypermutated samples. Worksheet 2: Significance 
scores in non-hypermutated samples. Worksheet 3: A comparison with the significance 
ranking from the Wood et al. paper. 

• Supplementary Table 4.  Arm and chromosome level copy-number changes 
• Supplementary Table 5.  Mutually exclusive pathway alterations in colorectal cancer 

identified by the MEMo method. For a description of MEMo see Supplementary Methods. 
• Supplementary Table 6.  Translocations involving genes as determined by 

BreakDancer. For each case the two partners and the genomic locations are indicated. 
• Supplementary Table 7.  Analysis of biallelic inactivation of APC 
• Supplementary Table 8.  Analysis of biallelic inactivation of TP53 
• Supplementary Table 9. Pathways frequently altered in non-hypermutated colon and 

rectal tumors (PARADIGM). Worksheet A: Results of the enrichment analysis for the 
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gene clusters. Contains the results of the Hypergeometric overlap test in which 
constituent pathways from the SuperPathway were overlapped with each of the 50 gene 
clusters. Overlap statistics show the -log(p-value) ("Significance" column), the number of 
genes in common between the constituent pathway and the cluster ("Overlap" column), 
the number of genes in the cluster ("Cluster Size" column), the number of genes in the 
constituent pathway ("Pathway Size" column), and the total number of genes in the 
SuperPathway ("Total Genes" column). Worksheet B: All of the genes listed as they 
appear in rows of the heatmap depicted in Figure 5A of the main text ("GENE" Column; 
HUGO symbol). Only genes within the SuperPathway were used for hierarchical 
clustering and are listed in cluster order. Pathway indicates to which constituent pathway, 
used to build the SuperPathway, the gene belongs. If a gene belonged to multiple 
constituent pathways the one most enriched in the cluster was selected. Worksheet C: 
All of the samples listed as they appear in the columns of the heatmap in Figure 5A. 

• Supplementary Table 10. Gene Expression, SCNA, and MicroRNA signatures 
associated with CRC Tumor Aggression. Signatures are displayed that meet a statistical 
threshold for the combined p-value by the weighted Fisher’s method after multiple test 
corrections (p<1 10-7,gene expression; p<10-4 SCNA, p < 0.001 MicroRNAs), and are 
also significant in the subset of samples that are either MSS or MSI-L. Column “Agg.” is 
1 for a signature that is elevated in aggressive tumors, and -1 for a signature that is 
lower.  Remaining columns: p-values for individual tests, no multiple testing correction.  
(More extensive tables, including those for methylation, mutation and Paradigm 
signatures, are provided in Supplementary Table 9). 

• Supplementary Table 11.  Gene Expression, SCNA, and MicroRNA, mutation and 
Paradigm signatures associated with CRC Tumor Aggression. 

• Supplementary Table 12.  Epigenetically silenced genes in colorectal cancer 
 
 
Supplementary Figures 

• Supplementary Figure 1. DNA methylation-based subgroups in CRC and their 
molecular and clinical features. We performed unsupervised clustering to determine 
subgroups in colorectal tumors based on their promoter DNA methylation profiles (See 
Supplemental Methods section). Shown is heatmap representation of DNA methylation 
β-values of 1,403 most variable probes (standard deviation >0.20) across 236 tumor 
samples, with dark blue indicating low DNA methylation and yellow indicating high DNA 
methylation. The RPMM-based cluster assignments are indicated above the heatmap: 
light sky blue, CIMP-H (n=36); orchid, CIMP-L (n=53); gold, cluster 3 (n=77) and light 
green, cluster 4 (n=70). Selected molecular and clinical features of each tumor sample 
are also shown as color bars above the heatmap, as indicated in the legends to the right 
of the heatmap. 

• Supplementary Figure 2.  Hierarchical clustering of microarray gene expression data in 
220 colorectal tumors reveals three main clusters. The tumors can be classified into 
three groups represented at the bottom of the Figure. 

• Supplementary Figure 3.  Consensus heatmap for three sample groups identified from 
miRNA-seq abundance profiles for 255 colorectal tumor samples. NMF consensus 
clustering was applied to a normalized abundance matrix for the 25% most variant 
mature or star strands (221 MIMATs). The legend colors and dendrogram reflect per-
sample cluster membership over 1000 iterations. Tracks under the heatmap show NMF 
clusters, colon vs. rectum sample types, then sample classifications from DNA 
methylation clusters: CIMP-H, CIMP-L, cluster 3 and cluster 4. 



W W W. N A T U R E . C O M / N A T U R E  |  3

SUPPLEMENTARY INFORMATION RESEARCH

• Supplementary Figure 4.  Somatic copy number variation deduced by single nucleotide 
polymorphism (SNP) arrays in 257 colon and rectal samples. A. Focal Peaks (the 
number of genes in each peak is shown in parentheses). B. Broad alterations per 
chromosome arm. 

• Supplementary Figure 5. Supplementary Figure 5. Molecular basis for chromosomal 
translocations.  For two of the recurrent translocations, the putative regions of 
breakpoints as deduced from the location of non-concordant reads (shown by arrows for 
NAV2-TCF7L1) were amplified and subjected to sequencing by capillary eletrophoresis. 
One such sequence from NAV2-TCF7L1 fusions and two from translocations involving 
TTC28 are shown. The numbers represent genomic coordinates. A. Translocations 
involving NAV2 and TCF7L1.  Three cases of translocations involving these two genes 
were found.  In all cases the translocation breakpoints are in intron 3 of NAV2 and intron 
3 of TCF7L1 (top).  The locations of discordant read pairs supporting the translocation in 
each of the three tumors are shown.  The translocation junction sequence derived from 
sequencing the amplified product from TCGA-AA-A00U is shown. Nucleotides in black 
correspond to those from NAV2 and those in red are from TCF7L1. B. Sequence derived 
from amplified products from two translocations involving TTC28.  The translocation 
involving TTC17 and TTC28 is a simple translocation while the translocation involving 
SPATA16 and TTC28 is complex and involves three chromosomes. 

• Supplementary Figure 6.  Genomic alteration patterns in select pathways in the non-
hypermutated tumors. Each column of an OncoPrint represents an individual case, each 
row represents a gene (see Supplementary Table 1 for a full table of all events).  Only 
cases with a pathway alteration are shown, and only the 165 non-hypermutated samples 
were included in this analysis. 

• Supplementary Figure 7. FBXW7 CRC mutations in the context of protein structure. 
Missense mutations in FBXW7 (green) are located almost entirely in the core of the 
target protein binding beta-propeller.  These mutations directly disrupt the ability of 
FBXW7 to bind to and catalyze ubiquitination of target proteins.  The most frequent 
FBXW7 mutation is circled at position R465.  Similarly, nonsense and frameshift 
mutations (red) affect the C-terminal protein binding beta-propeller exclusively, thereby 
disrupting FBXW7-catalyzed ubiquitination. 

• Supplementary Figure 8. Altered Patterns of Expression, Copy Number, Methylation 
and Mutations Associated with Tumor Aggressiveness. 
A. Expression of Gene APOL6 is Significantly Lower in Aggressive Tumors. APOL6 
gene expression (composite p-value p<10-16) is shown for individual clinical data values. 
The APOL6 colorbar from Figure 5B is reproduced, and examples are given of individual 
clinical associations contributing to that colorbar.  Each subpanel shows how APOL6 
expression levels segregate by clinical variable, along with the (unadjusted) individual p-
values and color. The other individual p-values are p=1.5•10-4 for Positive Lymph Nodes 
and p=0.012 for Vascular Invasion. APOL6, a member of the apolipoprotein L family, 
induces mitochondria mediated apoptosis in colorectal cancer cells [PMID:15671246].
B.  Clinical Associations for Mutations in Key Colorectal Cancer Proteins. PIK3CA, 
FBXW7 and BRAF mutations are less prevalent than expected in aggressive tumors, 
whereas TP53 and APC mutations show the opposite behavior. Association can be 
specifically dependent on protein domain context.  APC mutations occur in several 
defined regions in the protein, but only those found early in the protein, leading to loss of 
Armadillo repeats, show strong clinical association (e.g. Armadillo Repeat 1: p=3•10-7). 
In comparison, APC non-silent mutations as a whole lack association with tumor 
aggressiveness (combined p=0.76; all individual clinical comparisons have p>0.1). TP53 
mutants also exhibit a shift in clinical associativity depending on the possible locations of 
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mutations within specific domains.  Aggressiveness associations with BRAF and TP53 
are largely dictated by sample segregation by hypermutation and MSI status. (Mutations 
leading to loss of TP53 binding domain are found almost exclusively in non-
hypermutated samples). Threshold for inclusion in figure: p=0.05 and 10 mutations.   
C.  Tumor Aggressiveness Markers in the chromosome 22 region q12.3-13.2. The 
region includes apolipoprotein L family members (APOL1-4,6), immune receptor genes 
IL2RB (composite p=1.6•10-7) and CSF2RB (p=2.2•10-4) and apolipoprotein B mRNA 
editing enzyme family member APOBEC3 all of which show decreased expression in 
aggressive tumors. The region also includes mutations in the gene EP300, (p=2•10-4) 
coding for the transcriptional co-activator p300, which have a prior association with 
colorectal cancer [PMID:1473269]. 

• Supplementary Figure 9. Integrated large-scale analysis reveals the presence of 
multiple genomic regions that dictate tumor aggressiveness.  A. All molecular signatures, 
including gene expression, probe-level methylation, somatic copy number alterations, 
microRNAs, and gene mutation frequencies were scored on the basis of their combined 
statistical association with the clinical measurements of histological type, metastasis, 
tumor stage, fraction of positive lymph nodes, and vascular and lymphatic invasion.  
Molecular signatures significantly associated with tumor aggression (combined p-value 
p<10-3) are displayed as tiles according to data type (outer ring), and on a scale of tumor 
aggressiveness (inner ring).  Inner ring: Molecular readouts that are elevated in more 
aggressive tumors are shown in red, and those trending oppositely are blue, with the 
color intensity indicating the strength of the association. A web-based tool that allows 
interactive exploration of clinically correlated regions is available at 
explorer.cancerregulome.org. B. Detailed view of chromosome 20. Certain chromosomal 
regions are enriched in clinically associated molecular features. Region 20q13.12 
includes a local amplification (orange) and 11 genes (blue), all of which are expressed 
more highly in aggressive tumors. A number of methylation probes (green) are also 
statistically associated with tumor aggression, nearly all (8/10) with decreased levels in 
aggressive tumors. 

 
Supplementary Data at http://tcga-data.nci.nih.gov/docs/publications/coadread_2012/

• Supplementary Data File 1. A ZIP archive file containing the relevant data to 
reproduce the PARADIGM pathway analysis. The archive contains the following five 
files:  

o SuperPathway.txt: Superimposed Pathway used by the PARADIGM 
analysis. All of the merged concepts and interactions pooled from NCI-PID, 
Reactome, and BioCarta databases. At the top of the file, declarations of all 
of the concepts (genes, complexes, families, processes) can be found. 
Beneath these declarations are all of the regulatory interactions including 
transcriptionally activating (-t>), transcriptionally inactivating (-t|), subunit to 
complex relations (-component>), post-transcriptionally activating (-a>), post-
transcriptionally inactivating (-a|), activation of an abstract process (-ap>), 
inhibition of an abstract process (-ap|), and membership in a family relation (-
member>).  

o tcgaCOADREAD_Expression.vNormal.MANUSCRIPT.tab: A PARADIGM-
ready version of the expression data formatted as a tab-delimited file with the 
expression rank-ratios given as input to the PARADIGM algorithm.  

o tcgaCOADREAD_CNV.vNormal.MANUSCRIPT.tab: A PARADIGM-ready 
version of the copy number data. A tab-delimited file containing the copy 
number rank-ratios given as input to the PARADIGM algorithm.  
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o params.txt: The set of parameters needed to run PARADIGM that determine 
the initial setting of the constraints between concept- and interaction-related 
constraints (probabilistic factors). These parameters were learned from 
previous rounds of learning on other cancer cohorts and reused for this 
analysis.  

o config.txt: Contain settings for how PARADIGM’s inference engine was run 
for the CRC analysis. The file specifies that the belief propagation method for 
maximum likelihood inference should be used with a maximum of 10,000 
iterations for convergence and that the datasets for gene expression and 
copy number to be used are the files listed above. 

• Supplementary Data File 2. A network of the pathway concepts found by 
PARADIGM to be significantly modulated across the colonic and rectal tumor 
samples. The file modulated.cys contains the network as a Cytoscape session that 
has been tested on versions 2.6 or later. Nodes in the network correspond to 
concepts in the Superimposed Pathway and include genes (circles), complexes 
(hexagons), families (triangles), and cellular processes (boxes). Concepts are 
connected by regulatory interactions depicted as either activating (arrows) or 
inhibiting (“T”-bars) at the transcriptional level (solid lines), or post-transcriptional 
level (dashed lines). Subunit membership in complexes is depicted using undirected 
dashed lines. The network includes concepts with higher activation (red nodes) or 
inactivation (blue nodes) in tumors compared to normal. The size and opacity of the 
nodes are drawn as a function of the modulation score. 
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Specimen Samples 
 
Sample inclusion criteria. Biospecimens were collected from newly diagnosed patients with 
colon or rectum adenocarcinoma undergoing surgical resection and had received no prior 
treatment for their disease, including chemotherapy or radiotherapy.  All cases were collected 
regardless of surgical stage or histologic grade.  Cases were staged according to the American 
Joint Committee on Cancer (AJCC) staging system.  Each frozen tumor specimen had a 
companion normal tissue specimen which could be blood/blood components, adjacent normal 
tissue taken from greater than 2cm from the tumor, or previously extracted germline DNA from 
blood.  Each tumor specimen weighed at least 60 mg and was typically under 200 mg.  
Specimens were shipped overnight from two tissue source sites (Indivumed and Christiana 
Care) using a cryoport that maintained an average temperature of less then -180°C.  Each 
tumor and adjacent normal tissue specimen were embedded in optimal cutting temperature 
(OCT) medium and histologic sections were obtained from top and bottom portions for review.  
Each H&E stained case was reviewed by a board-certified pathologist to confirm that the tumor 
specimen was histologically consistent with colon adenocarcinoma and the adjacent normal 
specimen contained no tumor cells.  The sections were required to contain an average of 60% 
tumor cell nuclei with less than 20% necrosis for inclusion in the study per TCGA protocol 
requirements.   
 
RNA and DNA were extracted from tumor specimens using a modification of the DNA/RNA 
AllPrep kit (Qiagen). The isolation methodology for each sample was noted in the Biospecimen 
XML uploaded to the DCC (http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp).  A portion of the 
flow-through from the DNA column was processed according to the AllPrep RNA extraction 
instructions to produce RNA analytes >200 nt [designated ‘Allprep RNA Extraction’ in the 
biospecimen XML], while the other portion was either precipitated after TRIzol  separation 
[designated ‘Total RNA’ in the XML] or purified using a mirVana miRNA Isolation Kit (Ambion). 
This latter step generated RNA preparations that included RNA <200 nt [designated ‘mirVana 
(Allprep DNA) RNA’] suitable for miRNA analysis.  DNA was extracted from normal tissue using 
either the QiaAmp blood midi kit (Qiagen) or the QiaAmp tissue mini kit (Qiagen).  Each 
specimen was quantified by measuring Abs260 with a UV spectrophotometer. DNA specimens 
were resolved by agarose gel electrophoresis to determine the range of fragment sizes. The 
AmpFISTR Identifiler (Applied Biosystems) or Sequenom SNP panel procedure was utilized to 
verify tumor DNA and germline DNA were derived from the same patient.  One µg each of tumor 
and normal DNA was sent to Qiagen for REPLI-g whole genome amplification using a 100 µg 
reaction scale. Only those specimens yielding a minimum of 6.9 µg of tumor DNA, 2.15 µg of 
column-purified RNA, 3.15 µg TRIzol precipitated or mirVana-purified RNA, and 4.9 µg of 
germline DNA were included in this study.  Total and Column-purified RNA was analyzed via the 
RNA6000 assay (Agilent) for determination of an RNA Integrity Number (RIN), and only the 
cases with RIN >7.0 were included in this study.  At the time of the data freeze, 345 
colon/rectum adenocarcinoma cases were received by the BCRs and 56% passed quality 
control.   
 
Microsatellite instability testing. Microsatellite instability (MSI) status of the 
adenocarcinomas was evaluated in the clinical Molecular Diagnostics Laboratory of the Division 
of Pathology and Laboratory Medicine at The University of Texas M. D. Anderson Cancer 
Center and in the Biospecimen Core Resource at Nationwide Children’s Hospital. At M.D. 
Anderson, a panel of four mononucleotide repeat sequences (polyadenine tracts BAT25, 
BAT26, BAT40, and transforming growth factor receptor type II) and three dinucleotide repeat 

2
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sequences (CA repeats in D2S123, D5S346, & D17S250) was used on the basis of the 
recommendations from the National Cancer Institute Workshop on MSI in 20021. At Nationwide 
Children’s Hospital, the MSI Analysis System, Version 1.2 (Promega, Madison, WI) was used 
according to manufacturer’s instructions. This system uses five mononucleotide repeat markers 
(BAT-25, BAT-26, NR-21, NR-24, and MONO-27) for MSI interpretation and two 
pentanucleotide repeat markers (Penta C and Penta) to confirm sample identity. Electrophoretic 
mobility in these microsatellites from 202 tumors and matched non-neoplastic tissue or 
mononuclear blood cells was compared after multiplex fluorescent-labeled PCR and capillary 
electrophoresis to identify variation in the number of repeats.  Equivocal or failed markers were 
re-evaluated by singleplex PCR or through re-analysis of the entire MSI panel. Altered size of 
no marker in tumor DNA resulted in classification of the tumor as microsatellite-stable (MSS), 
one or two altered markers (<30%) as low levels of MSI (MSI-L), three altered markers (43%) as 
equivocal, and five to seven altered markers (>70%) as high levels of MSI (MSI-H). No case 
had alteration of four markers. In all MSI-L tumors and the one equivocal case, an additional six 
dinucleotide repeats on chromosome 18q (D18S69, 64, 1147, 55, 61 & 58 from centromere to 
telomere) were analyzed, and all tumors were MSI-L.  

Data Coordination Center (DCC) 
 
Data flow and organization. The TCGA data and analysis network involves leaders and 
teams working at multiple institutions and organizations in defined and coordinated roles, 
described briefly in the following overview. The Biospecimen Core Resources (BCRs) receive 
tissue samples and clinical metadata from Tissue Source Sites which are independently 
contracted by TCGA. The BCRs extract biospecimen analytes (DNA and RNA) from tissue 
samples, and ship plates containing aliquots of these analytes to the TCGA Genomic 
Sequencing Centers (GSCs) and Genomic Characterization Centers (GCC). BCRs assign each 
aliquot a unique and persistent biospecimen identifier, from which the parent analyte, sample, 
and case may be traced. These identifiers accompany aliquot shipments to the GSCs and 
GCCs. Data from any aliquot produced and submitted by the GSCs and GCCs are permanently 
associated with the aliquot identifier. The BCRs transfer biospecimen and clinical metadata 
along with the identifiers to the TCGA Data Coordinating Center (DCC), which maintains the 
identifier-metadata associations in a custom relational database. Genomic Data Analysis 
Centers (GDACs) perform integrative analyses across datatypes. GDAC results and 
applications are currently managed directly by these centers. 
 
GSCs, as well as GCCs producing RNA-Seq data, submitted sequence data, aligned to the 
hg18 reference genome, to NCBI’s Database of Genotype and Phenotype (dbGaP); sequence 
data were maintained in NCBI’s Sequence Read Archive (SRA). All other data, including 
instrument data for array-based platforms, and normalized and/or interpreted data (e.g., 
mutation calls or relative expression values), were submitted to the DCC. In general, GSC data 
available at the DCC include called and annotated somatic mutations in custom Mutation 
Annotation Format (MAF) files, as well as enhanced Variant Calling Format (VCF) files. GCC 
data at the DCC include primary instrument data (level 1), normalized or otherwise initially 
processed data (level 2), interpreted or segmented data (level 3), and summary, region of 
interest, or cross-datatype integrated analyses (level 4). DCC-managed data incorporates gene 
expression calls (for array-based, RNA-Seq, and miRNA-Seq platforms), array-based SNP 
calls, copy number variation, loss of heterozygosity (LOH), and DNA methylation. Array-based 
data archives are accompanied by Investigation Description Format (IDF) and Sample-Data 
Relationship Format (SDRF) files. These files comply with the MAGE-TAB format standard. A 

3
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complete list of TCGA instrument platforms and data types is given in Supplementary Methods 
Table 1. 
 
TCGA data at the DCC is organized by platform, data type and data level. Each platform may 
produce several types of data. For example, SNP-based platforms yield three data types: SNP, 
Copy Number Results, and Loss of Heterozygosity (LOH). The TCGA concept of data level 
segregates raw data from derived data, and derived data from higher-level analysis or 
interpreted results. Each center and platform may have a slightly different concept of data level 
depending on their data types, platforms, and the algorithms used for analysis; therefore, the 
centers themselves make the assignment of data level with assistance from the DCC as 
necessary. General descriptions of TCGA data levels are provided in Supplementary Methods 
Tables 2 and 3. 
 
Primary clinical and biospecimen data are submitted by the BCRs to the DCC in XML format. 
This XML is validated against public XML Schema documents that are deployed in directories at 
http://tcga-data.nci.nih.gov/docs/xsd/BCR/. The XML documents themselves are deployed by 
the DCC to the controlled access tier (see the section Data Access). The exact URLs of their 
associated schemas can be found in the header of the XML files themselves. For convenience, 
the DCC also provides flat, text-only tabular digests of clinical and biospecimen data elements 
that mirror the XML data, in which columns represent data elements and rows represent study 
cases. Tabular versions of the full clinical information are made available on the controlled 
access tier, while tabular versions of clinical information with PII removed are made available in 
the open access tier. Clinical and biospecimen terms referenced in the XML and tabular data 
are registered with the Cancer Data Standards Registry and Repository (caDSR) as clinical data 
elements. Clinical data element definitions and caDSR public identifiers can be found in the 
public TCGA Data Dictionary (http://tcga-
data.nci.nih.gov/docs/dictionary/TCGA_BCR_DataDictionary.xml). 
 
A more complete review of DCC data organization can be found on the TCGA Wiki, at the 
TCGA Data Primer (https://wiki.nci.nih.gov/x/j5dXAg) and links therein. 
 
Data access. The DCC hosts a portal to TCGA data at http://tcga-data.nci.nih.gov. Applications 
for searching and downloading the data are available at this site. Extensive documentation on 
TCGA data organization and DCC applications is also maintained on the TCGA Wiki at 
https://wiki.nci.nih.gov/display/TCGA/TCGA+Wiki+Home. Questions about TCGA data and 
access may always be directed to TCGA-DCC-BINF-L@list.nih.gov. 
 
The permanent set of data analyzed in the present paper has been collated and made available 
for direct download on the DCC portal. 
 
Controlled data access policies and procedures. TCGA produces large volumes of 
genomic information derived from human tumor specimens collected from patient populations, 
and grants access to significant amounts of clinical information associated with these 
specimens. The aggregated data generated is unique to each enrolled case and, despite the 
lack of any direct identifying information within the data, there is a risk of individual re-
identification by bioinformatic methods and/or third-party databases. Because patient privacy 
protection is paramount to NIH and TCGA, human subjects protection and data access policies 
are implemented to minimize the risk that the privacy of the donors and the confidentiality of 
their data will be compromised. As part of this effort, data generated from TCGA are available in 
two tiers. 

4
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The open access tier is publically accessible, and contains data that are considered by TCGA to 
present a low risk of re-identification of individual participants. The open access data tier does 
not require user certification for data access. The controlled access tier contains data, including 
all raw sequence data, that is unique to the individual participant or for which there is a high risk 
of individual re-identification as determined by TCGA. The controlled access tier encompasses 
all data classified by TCGA as Personally Identifiable Information (PII). This tier requires user 
certification for data access. For more information on these tiers and how to gain access to the 
controlled access tier, see http://tcga-data.nci.nih.gov/tcga/tcgaAccessTiers.jsp. 
 
To administer these tiers, the DCC maintains two server branches. The open access branch 
(https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/) houses open 
access data and is accessible without authentication. The controlled access branch 
(https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/tcga4yeo/) houses controlled data 
and is accessible by password authentication. Investigators who have applied for and received 
a Data Use Certificate (see http://tcga-data.nci.nih.gov/tcga/tcgaAccessTiers.jsp) can obtain a 
username and password. Sequence data at dbGaP is also password-accessible to investigators 
possessing a Data User Certificate. 
 
The DCC also post-processes clinical and biospecimen data after submission and before 
deployment to remove certain PII. Post-processing consists of replacing any absolute dates 
(those dates specified by day, month, and year) with interval dates, specified by days since the 
date of initial pathologic diagnosis; negative values in the data indicate events prior to diagnosis 
date. This replacement occurs in both the XML and tabular formats, and affects both access 
tiers. The date of initial pathologic diagnosis is completely removed from deployed data; 
however, the year of diagnosis (the “index year”) is preserved. In addition, age-related fields of 
enrolled cases whose reported age is over 90 years are set to 90 years. This modification is 
indicated in the XML with an attribute “floored” set equal to “true”. 

Data Sets 

TCGA used single nucleotide polymorphism (SNP) arrays (Affymetrix) and low pass (3-5X 
coverage) whole genome sequencing (Illumina HiSeq 2000) to detect chromosome and sub-
chromosomal copy number changes and translocations, microarray (Agilent) and RNA-Seq 
(Illumina) for mRNA expression profiling, Illumina Infinium HumanMethylation27 arrays to profile 
DNA methylation at gene promoters, miRNA quantification via Illumina sequencing and whole 
exome sequencing using both the Illumina and Solid platforms to detect coding mutations.  
Details about each of these platforms are presented below.  Each of the platforms utilized a 
slightly different number of samples.  Details of the sample IDs and the platforms used to study 
each of the samples are shown in Supplementary Table 1.

DNA Sequencing   
Library construction: Illumina HiSeq. After QC, high molecular weight double strand 
genomic DNA samples are constructed into Illumina PairEnd precapture libraries according to 
the manufacturer’s protocol (Illumina Inc.) with modification. Briefly, 1ug genomic DNA in 100ul 
volume was sheared into fragments of approximately 300 base pairs in Covaris plate with E210 
system (Covaris, Inc. Woburn, MA). The setting was 10% Duty cycle, Intensity of 4, 200 Cycles 
per Burst, for 120 seconds. Fragment size was checked using a 2.2 % Flash Gel DNA Cassette 
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(Lonza, Cat. No.57023). The Fragmented DNA was End-Repaired in 90ul total reaction volume 
containing sheared DNA, 9ul 10X buffer, 5ul END Repair Enzyme Mix and H2O (NEBNext End-
Repair Module; Cat. No. E6050L) and then incubated at 20°C for 30 minutes. A-tailing was 
performed in a total reaction volume of 60ul containing End-Repaired DNA, 6ul 10X buffer, 3ul 
Klenow Fragment (NEBNext dA-Tailing Module; Cat. No. E6053L) and H2O followed by 
incubation at 37°C for 30 minutes. Illumina multiplex adapter ligation (NEBNext Quick Ligation 
Module Cat. No. E6056L) was performed in a total reaction volume of 90ul containing 18ul 5X 
buffer, 5ul ligase, 0.5ul 100uM adaptor and H2O at room temperature for 30 minutes. After 
Ligation, PCR with Illumina PE 1.0 and modified barcode primers (manuscript in preparation) 
was performed in 170μl reactions containing 85 2x Phusion High-Fidelity PCR master mix, 
adaptor ligated DNA, 1.75ul of 50uM each primer and H2O. The standard thermocycling for 
PCR was 5’ at 95°C for the initial denaturation followed by 6-10 cycles of 15 s at 95°C, 15 s at 
60°C and 30 s at 72°C and a final extension for 5 min. at 72°C. Agencourt® XP® Beads 
(Beckman Coulter Genomics, Inc.; Cat. No. A63882) was used to purify DNA after each 
enzymatic reaction. After Beads purification, PCR product quantification and size distribution 
was determined using the Caliper GX 1K/12K/High Sensitivity Assay Labchip (Hopkinton, MA, 
Cat. No. 760517).  
 
DNA sequencing: Illumina HiSeq. Sequencing was performed in paired-end mode with 
Illumina HiSeq 2000. Illumina sequencing libraries were amplified by “bridge-amplification” 
process using Illumina HiSeq pair read cluster generation kits (TruSeq PE Cluster Kit v2.5, 
Illumina) according to the manufacturer’s recommended protocol. Briefly, these libraries were 
denatured with sodium hydroxide and diluted to 3-4 pM in hybridization buffer for loading onto a 
single lane of a flow cell in order to achieve 600-700k clusters/mm. All lanes were spiked with 
1% phiX control library. Cluster formation, primer hybridization were performed on the flow cell 
with illumina’s cBot cluster generation system. 
 
Sequencing reactions were extended for 202 cycles of SBS using TruSeq SBS Kit on an 
Illumina’s Hiseq 2000 sequencing machine according to the manufacturer's instructions. The 
Illumina Sequence Control Software (SCS) control the reagent delivery and collect raw images. 
Real Time Analysis (RTA) software was used to process the image analysis and base calling. 
On average, about 80-100 million successful reads, consisting of 2 X100 bp, were generated on 
each lane of a flow cell. 
 
Library construction: SOLiD 4. Whole genome amplified (WGA) DNA samples (5ug) were 
constructed into SOLiD precature libraries according to a modified version of the manufacturer’s 
protocol (Applied Biosystems, Inc.). Briefly, The genomic DNA was sheared into fragments of 
approximately 120 base pairs with the Covaris S2 or E210 system as per manufacturer 
instruction(Covaris, Inc. Woburn, MA).   Fragments were processed through DNA End-Repair 
(NEBNext End-Repair Module; Cat. No. E6050L) and A-tailing (NEBNext dA-Tailing Module; 
Cat. No. E6053L). The resulting fragments were ligated with BCM-HGSC-designed Truncated-
TA (TrTA) P1 and TA-P2 adapters with the NEB Quick Ligation Kit (Cat. No. M2200L). Solid 
Phase Reversible Immobilization (SPRI) bead cleanup (Beckman Coulter Genomics, Inc.; Cat. 
No. A29152) was used to purify the adapted fragments, after which nick translation and 
Ligation-Mediated PCR (LM-PCR) was performed using Platinum PCR Supermix HIFi 
(Invitrogen; Cat. No.12532-016) and 6 cycles of amplification. After Beads purification, PCR 
products’ quantification and their size distribution were analyzed using the Caliper GX 
1K/12K/High Sensitivity Assay Labchip (Hopkinton, MA, Cat. No. 760517). Primer sequences 
and a complete library construction protocol are available on the Baylor Human Genome 
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Website 
(http://www.hgsc.bcm.tmc.edu/documents/Preparation_of_SOLiD_Capture_Libraries.pdf).
 
Exome capture and sequencing: SOLiD. The precapture libraries (2 ug) were hybridized in 
solution to NimbleGen CCDS Solution Probes which targets ~36 Mbs of sequence from ~17K 
genes, according to the manufacturer’s protocol with minor revisions. Specifically, hybridization 
enhancing oligos TrTA-A and SOLiD-B replaced oligos PE-HE1 and PE-HE2 and post-capture 
LM-PCR was performed using 12 cycles. Capture libraries were quantified using PicoGreen 
(Cat. No. P7589) and their size distribution analyzed using the Caliper GX 1K/12K/High 
Sensitivity Assay Labchip (Hopkinton, MA, Cat. No. 760517). The efficiency of the capture was 
evaluated by performing a qPCR-based quality check on the built-in controls (qPCR SYBR 
Green assays, Applied Biosystems).  Four standardized oligo sets, RUNX2, PRKG1, SMG1, 
and NLK, were employed as internal quality controls. The enrichment of the capture libraries 
was estimated to range from 7 to 9 fold over the background.  The captured libraries were 
further processed for SOLiD sequencing. Primer sequences and a complete capture protocol 
are available on the Baylor Human Genome Website 
(http://www.hgsc.bcm.tmc.edu/documents/Preparation_of_SOLiD_Capture_Libraries.pdf)
 
Exome capture and sequencing: Illumina. Precapture libraries (1 ug) were hybridized in 
solution to NimbleGen SeqCap EZ Exome 2.0 Solution Probes targeting ~44Mbs of sequence 
from ~30K genes, or VCRome 2.1 (HGSC design, NimbleGen) targeting 43 Mb of sequence 
from ~30K genes, according to the manufacturer’s protocol with minor revisions. Specifically, 
hybridization enhancing oligos IHE1, IHE2 and IHE3 (manuscript in preparation) replaced oligos 
HE1.1 and HE2.1 and post-capture LM-PCR was performed using 14 cycles. Capture libraries 
were quantified using Caliper GX 1K/12K/High Sensitivity Assay Labchip (Hopkinton, MA, Cat. 
No. 760517). The efficiency of the capture was evaluated by performing a qPCR-based quality 
check on the built-in controls (qPCR SYBR Green assays, Applied Biosystems).  Four 
standardized oligo sets, RUNX2, PRKG1, SMG1, and NLK, were employed as internal quality 
controls. The enrichment of the capture libraries was estimated to range from 7 to 9 fold over 
background.  
 
DNA Sequencing:  SOLiD. Each captured library was hybridized to microbeads using Applied 
BioSystems’  SOLiD platform-specific adapters) and submitted to an emulsion PCR to amplify 
the DNA fragments onto the beads (SOLiD ePCR Kit V2, Applied Biosystems). After 
amplification, the beads were recovered from the oil phase and the beads carrying amplified 
bound DNA were enriched (SOLiD Buffer and Bead Enrichment Kits, Applied Biosystems). The 
beads carrying amplified bound DNA were then modified to covalently adhere to a SOLiD 
coated slide (SOLiD Bead Deposition and Slide Kits, Applied Biosystems). The slides were 
loaded on the SOLiD v3 sequencing platform (SOLiD 3 Instrument Buffer Kit, Applied 
Biosystems) and sequenced over 8 days (SOLiD Fragment Library Sequencing Kit – MM50, 
Applied Biosystems).

Mapping Reads. SOLiD. Base and quality calling for SOLiD data was performed on-
instrument using standard vendor software and settings.  Upon completion of a run, read and 
quality data was copied into our data-center where individual sequence events are split into 10M 
read bundles and mapped in parallel using BFAST (version 0.6.4).  After read bundles are 
mapped their results are merged back into a single sequence-event-level BAM where read 
group tags are added.  Where necessary, sample-level BAMs are generated by merging using 
Picard (version 1.7), and duplicate reads are marked at the library level using SAMtools (version 
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1.7).  Variant calling is done using custom filters applied to pileups made at the sample level, 
also using SAMtools.
Illumina. The output of a Illumina HiSeq sequencer are binary bcl files that are processed using 
the software (BCLConvertor 1.7.1). All reads from the prepared libraries that passed the illumina 
Chastity filter were formatted into fastq files. The fastq files are aligned to the genome using 
BWA (bwa-0.5.9rcl) against human genome build #18.  The BWA reference library is 
constructed by the Broad Institute and then distributed to TCGA sequencing centers to ensure 
compatibility of aligned sequences among centers.  Default parameters are used for alignment 
except for a 40 bp seed sequence, 2 mismatches in the seed, and a total of 3 mismatches 
allowed.  
 
Mutation Detection.  BAM files generated from alignment of Illumina sequencing reads were 
preprocessed using GATK.  Mutations in Illumina data were discovered by the MuTect 
algorithm2 (see also http://www.broadinstitute.org/cancer/cga/MuTect).  Mutations in BAM files 
generated from SOLiD reads were detected as follows: SamTools Pileup was run to list all 
variants found in multiple reads at a single locus.  The variants were further filtered to remove all 
those observed fewer than 5 times or were present in less than 0.10 of the reads. At least one 
variant had to be Q30 or better, and the variant had to lie in the central portion of the read, 15% 
from the 5’ end of the read and 20% from the 3’ end.  In addition reads harboring the variant 
must have been observed in both forward and reverse orientations.  Finally, the variant base 
was not observed in the normal tissue.  Insertion or deletion variants (“indels”) were discovered 
by similar processing except indels must have been observed in 0.25 of the reads (see below 
for detection of frameshift indels at microsatellite sites).  
 
Validation of Mutations.  Mutations were validated by running a second sequencing reaction 
on captured or PCR amplified DNA from the mutated sample and its matched normal.  Since 
whole genome amplified DNA had been used in the mutation discovery phase, template DNA 
samples for validation were native DNA, if available.  If not, a second whole genome 
amplification was performed to avoid false validation from random WGA artifacts.  In the non-
hypermutated patients we attempted to validate all non-silent mutations.   The majority of these 
were validated using PCR amplification of the mutation locus, followed by sequencing on 454. 
Nine patients were sequenced on both Illumina and SOLiD and for those patients the initial calls 
observed on both platforms were considered validated.  The 35 hypermutated patients 
accounted for 75% of the mutations in the original discovery set. These patients were subjected 
to a second capture, using and independent capture library preparation, followed by sequencing 
on an Illumina instrument.  The final mutation file, Table 2A, consists of 60,313 non-silent 
mutations validated by these methods.  “Non-silent” includes missense, nonsense, splice site or, 
in-frame and frameshift indels.  There are an additional 7,863 primarily in non-hypermutated 
patients, that remain in unknown validation status, for which we will attempt further rounds of 
validation.  Table 2A also reports 15,930 silent mutations, with 4666 remaining in unknown 
status. 
 
Detection of insertion and deletion mutations in microsatellite instable tumors. 
Microstatellite instability (MSI) is a hypermutator phenotype characterized by the propensity to 
mutate at runs of short tandem repeats (microsatellites) through insertion or deletion triggered 
by the disruption of the DNA mismatch repair apparatus3.  This tumor phenotype, important 
because it correlates with good prognosis, is measured by assay of five tandem repeat loci.  
Increased rates of indel mutation leading to frameshift mutation are also observed in the coding 
sequence of genes harboring homopolymer runs, some of which play a key role in colorectal 
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adenocarcinoma1. We focused our analysis at the site of known homopolymer runs in selected 
genes (Supplementary Methods Table 5).    

 

In our automated analysis of whole exome data, 
we failed to detect the predicted increase rate of 
frameshift mutation at these sites in patients who 
tested positive for MSI.  Inspection of the 
sequencing reads at these sites revealed high 
levels of mutation in the tumor, but also low levels 
of apparent mutation in the reads from the 
normal. The low rate of mutation reads derived 
from normal tissue was most likely caused by 
enzyme slippage during PCR amplification4 of the 
sequencing template, since this low background 
rate was uniform across all tumors regardless of 
MSI status.  

If we define the mutant allele fraction (AF) as the 
number of reads harboring a non-reference allele 
divided by the total number of reads covering the 
locus, reads derived from normal tissue had allele 
fractions less than 0.01, while tumors exhibiting 
MSI has mutant AF greater at least 20 times 
higher.  A histogram could be generated tallying 
the reference and mutated reads for each patient 
at a given site, as is shown in Figure A for the 
homopolymer run of 10 A in TGFBR2. To assess 
the rate of frameshift mutation in colorectal 
adenocarcinoma patients, we generated 
histograms, like those shown in Supplementary 
Methods Figure 1, for each of the genes shown in 
Supplementary Methods Table 5 and scored 
them numerically by the relative AF in tumor and 
normal.  If the difference between the tumor and 
normal AF was greater than 0.2, we scored the 
site in the gene as mutated.  The results of this 

analysis are shown in Supplementary Table 2. 

Supplementary Methods Table 5. 
Homopolymer runs in genes related to 
colorectal adenocarcinoma.                    

9



W W W. N A T U R E . C O M / N A T U R E  |  1 5

SUPPLEMENTARY INFORMATION RESEARCH

 

Supplementary Methods Figure 1.  Representative histogram showing indel analysis of DNA sequencing reads 
on an A10 homopolymer run within the TGFBR2 gene from 68 colorectal cancers (top panel) and matched normal 
control tissue (bottom panel).  For each tumor and matched normal tissue, bars represent the fraction of read with 
deletions (on the bottom of each panel) or insertions (on the top of each panel).  The colors of each bar vary 
depending on the number of nucleotides inserted or deleted (note legend above the top panel).  The white bars 
represent missing data. Most deletions produce a -1 frameshift (red bars) but sometimes -2 deletions (orange 
bars) are observed.  Note in the top panel that four of the tumors (with asterisk-associated bars) have much 
higher fractions of deletion reads than other tumors or the normal tissues.  These four tumors were considered to 
have a frameshift mutation in one of their TGFBR2 alleles.   

The frequency of mutation at a given site is dependent on the length of the homopolymer run.  
Runs of 10 produced the highest mutation rates whereas runs of 6 produced the lowest 
mutations rates. 

Identification of significantly mutated genes. The ranking of genes in terms of estimated 
conferred selective advantage was performed using the mutation statistical analysis algorithm 
MutSig (v1.3 , Lawrence et al., manuscript in preparation). The MutSig algorithm works with an 
aggregated list of mutations across the entire patient set and estimates background mutation 
rates. The p and q values for a certain gene, corresponding to raw probability, p, and the 
probability, q, corrected for multiple testing, are determined for the mutation rate observed in 
that gene in relation to the background model.  
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MutSig uses various factors to accurately estimate the background mutation rate, taking into 
account the background mutation rates of different mutation categories (e.g.,  transitions or 
transversions in different sequence contexts), as well as the fact that different samples have 
different background mutation rates. It then uses convolutions of binomial distributions to 
calculate the p and values for each gene, which represents the probability that we observe by 
chance a certain configuration of mutations in a gene, given the background model. It also takes 
into account the non-synonymous to synonymous mutation ratio for each gene in order to 
separate out the genes with a large number of non-synonymous events compared to 
synonymous ones. 
 

Copy‐number and rearrangements 

Identification of copy number variants. To characterize somatic copy number alterations in 
the tumor genome, we applied a new algorithm called BIC-seq5 to low-coverage whole-genome 
sequencing data. First, we counted the reads (uniquely aligned to the reference genome with at 
least 46bp out of 50bp aligned) in fixed-size, non-overlapping windows along the genome. 
Given these bins with read counts for tumor and matched normal genomes, BIC-seq attempts to 
iteratively combine neighboring bins with similar copy numbers.  Whether the two neighboring 
bins should be merged is based on Bayesian Information Criteria (BIC), a statistical criterion 
measuring both fitness and complexity of a statistical model.  Segmentation stops when no 
merging of windows improves BIC, and the boundaries of the windows are reported as a final 
set of copy number breakpoints. Segments with copy ratio difference smaller than 0.1 (log2 
scale) between tumor and normal genomes were merged in the post-processing step to avoid 
excessive refinement of altered regions with high read counts. 

Structural variation discovery with BreakDancer. Structural Variation detection is 
performed with the program BreakDancer on a .bam file constructed from HiSeq sequencing of 
each tumor pair6. The first step requires a configuration file of each bam file for each tumor pair 
with the bam2cfg.pl perl module of the program.  After the configuration file, the perl module 
BreakDancerMax.pl is run on the configuration file in order to call structural variants in the tumor 
and control files. Each tumor structural variant file is filtered with its matched normal and all 
possible somatic variants are filtered with a metanormal to remove any false positives.  
 
To understand the translocations at the structural level, we PCR amplified the junction 
fragments using primers from regions of the two chromosomes close to the region of putative 
breakpoints and the DNA from this product was subjected to sequencing using the Sanger 
method on a capillary electrophoresis unit.  Examination of the resulting sequence allowed us to 
define the translocation breakpoints at the nucleotide level.  Results from this analysis for 
translocations involving NAV2-TCF7L2 and TTC28 with different partners are shown in 
Supplementary Figure 5. 
 
SNP Based Copy Number Analysis. Tumor and germline-derived DNA samples were 
hybridized to Affymetrix SNP 6.0 arrays using manufacturers’ protocols at the Genome Analysis 
Platform of the Broad Institute.  Data are subsequently processed from the raw .CEL files using 
Birdseed to infer a preliminary copy-number at each probe locus.   For each tumor, genome-
wide copy number estimates are refined using tangent normalization, in which tumor signal 
intensities are divided by signal intensities from the linear combination of all normal samples 
that are most similar to the tumor (to be described in greater detail in Getz et al, in preparation). 
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This linear combination of normal samples tends to match the noise profile of the tumor better 
than any set of individual normal samples, thereby reducing the contribution of noise to the final 
copy-number profile.  The individual copy-number estimates then undergo segmentation using 
Circular Binary Segmentation as described previously.  As part of this process of copy-number 
assessment and segmentation, we remove regions corresponding to germline copy-number 
alterations by elimination of regions of copy-number alteration identified from either previously 
annotated copy-number variant filters created using the TCGA germline samples for the ovarian 
cancer analysis or from additional removal of regions identified in the germline genomes of 
samples from this collection.  

All samples following processing are analyzed by several quality control metrics.  Both tumor 
and normal samples are screened for noise, as evidenced by excessive variation between 
successive probes or an excessive segmentation count.  In addition, normal samples are 
screened for DNA quality by the Affymetrix FQC probes on the SNP 6.0 array as well as by the 
genotyping call rate.  Among the samples in this study entering into the copy-number pipeline, 
7% of tumors and 28% of germline samples failed to meet all quality-control metrics.  The higher 
percentage of germline samples failing this metric was attributed to some variation in DNA 
extraction methods used for several batches of germline DNA. 
 
As described previously, the segmented copy number profiles for ovarian carcinoma and 
matched control DNAs were first analyzed using Ziggurat Deconstruction to determine the 
length and amplitude of inferred copy number changes underlying each segmented copy 
number profile7,8. Events are subsequently categorized into focal copy number events much 
smaller than a chromosome arm, and broad copy number events that span a chromosome arm 
or entire chromosome for separate analysis of the two classes of events. As with the TCGA 
ovarian cancer analysis, length threshold of 50% of a chromosome arm was used to distinguish 
between broad and focal events. Segments were filtered using an amplitude threshold at a 
copy-difference of a log2 copy-number ratio of 0.3 with amplification intensities capped at a 
value of 1.5 to avoid hypersegmentation due to variation of the dynamic range of probes on the 
SNP arrays.   Analysis of broad copy number changes was performed as previously described9.   
Similarly, focal copy number changes in the 186 colon adenocarcinoma samples, 71 rectal 
adenocarcinoma samples and the composite dataset were analyzed using the GISTIC 
methodology9.  All focal amplifications and deletions identified by GISTIC were subject to visual 
inspection, and the events representing likely segmentation artifacts or germline variants 
(amplification peaks at intergenic regions on 2q21.2, 7q34 and 17p11.1) were removed from 
analysis.  For the GISTIC analysis, those events with false discovery rates (FDR) <0.05 were 
included for discussion in the text of the manuscript and downstream analyses.  For 
completeness, Supplementary Table 4 lists all GISTIC amplification and deletion peaks to an 
FDR of 0.25.  However, with the peaks at lower statistical significance, GISTIC was often less 
able to resolve those peaks to more focused sets of target genes. 
 

Microarray Expression Profiling  

RNA labeling, array hybridization and data processing. Gene expression profiling was 
performed as described previously9.  Briefly, 2 ug of total RNA of sample (n=220) and 
Stratagene Universal Human Reference were amplified and labeled using Agilent’s Low RNA 
Input Linear Amplification Kit.  Sample and reference were co-hybridized on a Custom Agilent 
244K Gene Expression Microarray (AMDID019760).  The expression data was Lowess 
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normalized and the ratio of the Cy5 channel (sample) and Cy3 channel (reference) were log2 
transformed to create gene expression values for 23,199 probesets.   Probesets without gene 
annotations and genes with missing data in ≥ 20% of the samples were removed, resulting in 
13,994 genes available for further analysis.  Missing values in the remaining genes were 
imputed with the mean value across all samples.  PCA (JMP Genomics, v.4.0) analysis 
indicated that the source of the RNA (BCR) was responsible for 23% of the variance of the 
microarray data, which was normalized out using JMP Genomics’ Batch Correction procedure  
 
Consensus and Hierarchical Clustering. The normalized gene expression dataset of 220 
colorectal cancers (152 colon and 68 rectum) was filtered to include 1,558 consistent, but 
variably expressed genes (MAD > 0.564).  Consensus clustering10 using self organizing maps 
identified between 2-4 robust clusters. A nearest centroid-based classifier (CLaNC) was used to 
identify signature genes for each of the clusters11.  Grouping the samples into 3 subtypes 
resulted in the identification of gene signature containing 1020 genes (340 genes per class), 
which had the lowest cross validation and prediction error out of the 2, 3 and 4 class classifiers 
Hierarchical clustering of the 220 colorectal cancers across the 1020 signature genes 
demonstrates that the samples group into 3 distinctive groupings (Supplementary Figure 2). 

RNA‐Seq Methods 

Total RNA for each sample was converted into a library of template molecules for sequencing 
on the Illumina Cluster Station and Genome Analyzer according to the protocol for the Illumina 
mRNA Sample preparation kit (Part#1004898, Rev A: Illumina, San Diego, CA).  Briefly, poly-A 
mRNA was purified from total RNA (2 µg) using poly-T oligo-attached magnetic beads.  The 
mRNA was then fragmented and the first strand of cDNA was synthesized from the cleaved 
RNA fragments using reverse transcriptase and random primers.  Following the synthesis of the 
second strand of cDNA, end repair was performed on overhangs using T4 DNA polymerase and 
Klenow DNA polymerase, followed by ligation of sequencing Adapters to the ends of the DNA 
fragments.  The cDNA fragments were purified using a gel run at 80 V for approximately 3 hours 
until the Orange G dye band reached the bottom of the gel.  The gel was stained with SYBR 
green to visualize the DNA band.  A band at 350 – 450 bp was excised vertically from the gel, 
which was then dissolved at room temperature using a QIAquick Gel Extraction Kit (Qiagen, 
Valencia, CA).  The purified cDNA templates were enriched for 15 cycles of PCR amplification 
and validated using a BioAnalyzer to assess size, purity and concentration of the purified cDNA 
libraries.  The cDNA libraries were placed on an Illumina Cluster Station for single end cluster 
generation according to the protocol outlined in the Illumina Genome Analysis User Guide 
(Part# 11251649, RevA).  The template cDNA libraries (1.5 µg) were hybridized to a flow cell, 
amplified and linearized and denatured to create a flow cell with ssDNA ready for sequencing.  
Each flow cell was sequenced on an Illumina GAIIX Genome Analyzer.  Each sample 
underwent a single lane of sequencing using single end sequencing for 76 cycles according to 
the protocol outlined in the Illumina Genome Analysis User Guide (Part# 11251649, RevA).  
After completion of the 76 cycle sequencing run, the raw sequence data entered the UNC 
RNAseq Workflow. 
 

RNA‐Seq Data Processing Workflow  (BWA to Transcriptome) 
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Step 1:  Construct database of reference transcript sequences, composite gene models, 
composite exons, and splice junctions. The reference transcript set is based on the hg19 
UCSC Gene standard track (December 2009 version), which is a publically-available sequence 
set that can be downloaded from the UCSC Genome Browser (http://genome.ucsc.edu/).  From 
this set, only sequences mapped to canonical human chromosomes (chr1-22, X, Y, and M) were 
retained.  For each selected transcript, the nucleotide sequence, association to 
Entrez/LocusLink genes (if known), and CDS range (if known) were extracted from the UCSC 
database tables.  Additionally, a pairwise alignment of each transcript against the hg19 genome 
was provided by Mark Diehkans from UCSC.  The reference transcript set contains 73,671 
human transcript sequences representing 20,532 human genes.  67,434 transcript sequences 
are given gene assignments according to the UCSC database tables; the remaining 6,237 
sequences in the reference transcript set are not currently associated with an Entrez/LocusLink 
gene.  No transcript is associated with more than one Entrez/LocusLink gene.  For each gene 
represented by one or more transcripts in this set, a composite gene model was generated by 
merging all overlapping exons (as defined by the genomic mapping) from each associated 
reference transcript.  Thus, each composite gene model is essentially the union of all associated 
reference transcripts.  Each gene model is linked to a specific Entrez/LocusLink gene identifier. 
A library of composite exons was then established by collecting each contiguous genomic 
segment from each gene model.  Note that because the gene model construction process 
involves merging overlapping exons from different transcripts, the resulting composite exons 
may or may not be observed in reference transcript sequences.  This library contains 239,886 
unique composite exons, each of which is defined by its genomic range.  A library of all known 
splice junctions was established by cataloging all junctions observed in the reference transcript 
sequences.  Inclusion of a splice junction in this library indicates that it has been observed in (at 
least) one reference transcript.  However, not all splice junctions in this library will be observed 
in the composite gene models.  This library contains 249,775 unique splice junctions, where 
each junction is defined by the last position of exon N and the first position of exon N+1. 
 
Step 2:  Prepare raw sequencing reads for alignment.  The “illumina2srf” tool from the DNA 
Sequence Read Toolkit (http://sourceforge.net/projects/sequenceread/) is used to convert the 
raw sequencing data from the vendor-specific format to standard SRF (sequence read format), 
which is a preferred compressed format for storing sequencing reads.  Before data processing 
begins, the “srf2fastq” tool from the Staden Package (http://staden.sourceforge.net/) is utilized to 
convert the data from SRF to the FASTQ format, using the “-C” parameter to simultaneously 
filter poor quality reads.  In some cases, the insert size of the sequenced fragment is shorter 
than the read length, resulting in part or all of the adapter (primer) sequence being incorporated 
into the output read.  Since any read containing adapter sequence is highly unlikely to align to a 
biological reference database, all reads are further processed to trim any adapter segments 
from the sequences.  The criteria for identifying adapter sequence within a read are as follows:  
(a) the read contains an exact match with the adapter sequence, (b) the sequence match begins 
at the first base of the adapter, (c) the sequence match continues until either the end of the 
adapter or the end of the read, and (d) the sequence match is at least 5 bases in length.  If all 
criteria are met, the read is trimmed starting at the first base of the adapter sequence match. 
 
Step 3:  Align sequencing reads against reference transcript database.  A pre-processed 
lane of sequencing reads is then submitted to the BWA algorithm (http://bio-
bwa.sourceforge.net/) for alignment against the reference transcript database using default 
parameters.  The resulting SAM file is converted to BAM format using Picard tools 
(http://picard.sourceforge.net/). 

Step 4:  Calculate quantification at the transcript level.  The reads aligned to the reference 
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transcript sequences are used to determine transcript level quantification.  Three quantification 
values are reported:  raw read counts, coverage, and RPKM.  Raw read counts is simply the 
number of reads aligned to a given reference transcript.  Raw read counts are normalized by 
transcript length to give coverage.  For a given TranscriptX, coverage is calculated by:  total 
bases aligned to TranscriptX / length of TranscriptX.  The “total bases aligned” will typically be 
equal to aligned reads × read length.  However, in cases where reads have been trimmed due 
to adapter contamination, this value may be slightly lower.  Raw read counts are normalized by 
both transcript length and overall lane yield to give RPKM.  For a given TranscriptX, RPKM is 
calculated by:  (raw read counts × 109) / (total reads × length of TranscriptX).  For this 
calculation, “total reads” is the lane yield after removing poor quality reads. 
 
Step 5:  Calculate quantification at the gene level.  Quantification at the gene level is 
determined by collapsing the transcript level quantifications onto their associated gene loci.  
Raw read counts, coverage, and RPKM are reported for each gene.  Raw read counts for a 
given GeneX is the sum of reads aligned to all transcripts associated with that gene.  Coverage 
for a given GeneX is determined by:  sum of bases aligned to all transcripts associated with 
GeneX / length of GeneX.  RPKM for a given GeneX is calculated by:  (raw read counts × 109) / 
(total reads × length of GeneX).  “Total reads” is the lane yield after removing poor quality reads.  
In both the coverage and RPKM calculations, the length of GeneX is defined as the median 
length of all transcripts associated with GeneX. 
 
Step 6:  Calculate quantification at the exon level.  In order to carry quantification for 
sequence features defined by their genomic locus (i.e. exons and splice junctions), the aligned 
reads must first be translated from transcript coordinates to genomic coordinates.  The pre-
established pairwise mapping between each reference transcript and the hg19 genome allows 
for a straightforward conversion between these two coordinate systems.  These converted 
aligned reads are then used to determine exon level quantification.  Raw base counts, 
coverage, and RPKM are reported for each entry in the library of composite exons.  The raw 
base counts for a given ExonX is the total number of bases aligned to that genomic segment.  
Raw base counts are used instead of raw read counts because in many cases only a portion of 
a read will align to a given exon.  For a given ExonX, coverage is calculated by:  raw base 
counts / exon length.  RPKM for a given ExonX is determined by: (raw base counts / median 
read length) × 109) / (total reads × exon length).  Except in cases where the raw reads have 
undergone extensive adapter trimming, the median read length will be equal to the experimental 
read length for that lane.  “Total reads” is the lane yield after removing poor quality reads. 

Step 7:  Calculate quantification at the splice junction level.  Quantification at the splice 
junction level is also calculated based on the aligned reads converted to genomic coordinates.  
The only reported value for this level is raw read counts, which is determined by the number of 
reads that cross a particular junction.  Because a splice junction has an effective length of zero, 
the coverage and RPKM calculations do not apply. 
 
Step 8:  Generate visualization of coverage.   To facilitate visualization of read coverage 
across genomic segments of interest, the quantification data is converted to the UCSC bigWig 
format to enable viewing in the UCSC Genome Browser with down to single-base resolution. 
 
Step 9:  Evaluate QC metrics.  Each lane is evaluated according to a variety of both pre- and 
post-alignment QC measures in order to determine whether the data set in question falls within 
expected quality thresholds.  The following metrics are assessed on a per-lane basis: 

• Total read counts 
• Reads passing filter 
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• Percent of reads that are unique 
• Base quality per cycle 
• Nucleotide distribution per cycle 
• Percent of reads requiring adapter trimming 
• Mean effective read length after adapter trimming 
• Percent of reads aligning to human reference transcripts 
• Percent of reads aligning to human rRNA 
• Percent of reads aligning to human miRNA 
• Percent of reads aligning to human mtDNA 
• Percent of reads aligning to the human genome 
• Percent of reads aligning to other genomes (mouse, rat, fruit fly, Arabidopsis, 

yeast) 
• Percent of reads aligning to viral genomes 
• Average coverage per human gene 
• Average coverage across the length of reference transcripts 

 
 
 

RNAseq determination of PI3KCA sequence variants 
The subset of samples that was sequenced on the SOLiD platform had poor coverage for 
PIK3CA. We used RNA-Seq data to call mutations in PIK3CA in these samples. For each 
sequenced sample a pileup file was generated from the aligned .bam file using the Samtools 
(http://samtools.sourceforge.net) pileup function.  Sequence variants at a given chromosomal 
location were considered valid if the variant base was present in ≥ 30% of the reads at the 
location. The identified mutations are listed in Supplementary Table 2. 

 

DNA Methylation Profiling 
 
Array‐based DNA methylation assay. We used the Illumina Infinium DNA methylation 
platform (HumanMethylation27 BeadChip) (Illumina, San Diego, CA) to obtain gene promoter 
DNA methylation profiles of 167 TCGA colon adenocarcinoma samples and 37 adjacent non-
tumor colonic tissue samples (batches 28-30, 33, 36, 41, 45, 66) and 69 TCGA rectal 
adenocarcinoma samples and five adjacent non-tumor rectal tissue samples (batches 42 and 
46). The Infinium HumanMethylation27 panel targets 27,578 CpG sites located in proximity to 
the transcription start sites of 14,475 consensus coding sequencing (CCDS) in the NCBI 
Database (Genome Build 36). The assay probe sequences and information on each 
interrogated CpG site on the Infinium HumanMethylation27 BeadChip can be found in the 
MAGE-TAB ADF (Array Design Format) file deposited on the TCGA Data Portal.  We performed 
bisulfite conversion on 1 µg of genomic DNA from each sample using the EZ-96 DNA 
Methylation Kit (Zymo Research, Irvine, CA) according to the manufacturer’s instructions. We 
assessed the amount of bisulfite converted DNA and completeness of bisulfite conversion using 
a panel of MethyLight-based quality control (QC) reactions as previously described12 (10). All 
the TCGA samples passed our QC tests and entered the Infinium DNA methylation assay 
pipeline. 
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Bisulfite-converted DNA was whole genome amplified (WGA) and enzymatically fragmented 
prior to hybridization to BeadChip arrays. The amplified and fragmented DNA molecules anneal 
to a locus-specific DNA oligomers (50 mers) covalently attached to a specific bead type. Each 
interrogated CpG locus can hybridize to methylated (CpG) or unmethylated (TpG) oligo bead 
types. DNA methylation-specific primer annealing is followed by single-base extension using 
labeled nucleotides [cy5 (red) or cy5 (green)]. Both methylated (M) and unmethylated (U) bead 
types for a specific CpG locus incorporate the same labeled nucleotide, as determined by the 
base immediately preceding the cytosine being interrogated by the assay, and are subsequently 
detected in a single color channel. Fluorescence intensities of the M and U bead types for each 
CpG locus were measured using the Illumina BeadArray Reader. The mean signal intensities 
for replicate M and U probes for each CpG locus were extracted from Illumina GenomeStudio 
software. The level of DNA methylation at each CpG locus is scored as beta (β) value 
calculated as (M/(M+U)), ranging from 0 to 1, with values close to 0 indicating low levels of DNA 
methylation and beta values close to 1 indicating high levels of DNA methylation. 
 
The detection P values provide an indication of the quality of DNA methylation measurement 
and are calculated as previously described13. We determined that data points with a detection P 
value >0.05 are not significantly different from background measurements, and therefore were 
masked as “NA” in the Level 2 and Level 3 data packages. All Infinium DNA methylation data 
were packaged and deposited onto the TCGA Data Portal web site (http://tcga-
data.nci.nih.gov/tcga/). 
 
TCGA data packages. The data levels and the files contained in each data level package are 
described below and are present on the TCGA Data Portal website (http://tcga-
data.nci.nih.gov/tcga/). Please note that with continuing updates of genomic databases, data 
archive revisions become available at the TCGA Data Portal.  
 
LEVEL 1: Level 1 data contain the non-background corrected signal intensities of the M and U 
probes and the mean negative control cy5 (red) and cy3 (green) signal intensities. A detection P 
value for each data point, the number of replicate beads for M and U probes as well as the 
standard error of M, U, and control probe signal intensities are also provided. It is important to 
note that for some CpG targets, both M and U measurements will be cy3, and for others both 
will be cy5. To resolve ambiguities regarding this subtlety of the Infinium DNA Methylation 
assay, we have labeled the cy3 and cy5 values deposited to the DCC as “Methylated Signal 
Intensity” and “Unmethylated Signal Intensity”. The information of which dye is used for each 
CpG locus is supplied in the MAGE-TAB ADF file deposited in the DCC. 
 
LEVEL 2: Level 2 data files contain the β-value calculations for each probe and sample. Data 
points with detection P values >0.05 were not considered to be significantly different from 
background, and were masked as “NA”. 
 
LEVEL 3: Level 3 data contain β-value calculations, HUGO gene symbol, chromosome number 
and genomic coordinate for each targeted CpG site on the array. In addition, we masked data 
points with "NA" from the probes that 1) contain known single nucleotide polymorphisms (SNPs) 
after comparison to the dbSNP database (Build 130), 2) contain repetitive sequence elements 
that cover the targeted CpG locus in each 50 bp probe sequence, 3) are not uniquely aligned to 
the human genome (NCBI build 36.1) at 20 nucleotides at the 3' terminus of the probe 
sequence, 4) span known regions of small insertions and deletions (indels) in the human 
genome (dbSNP build 130).  
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The following data archives were used for the analyses described in this manuscript.  
 
Colon adenocarcinoma samples and normal-adjacent colon tissues:  

Batch 28: jhu-usc.edu_COAD.HumanMethylation27.Level_3.1.2.0 
Batch 29: jhu-usc.edu_COAD.HumanMethylation27.Level_3.2.2.0 
Batch 30: jhu-usc.edu_COAD.HumanMethylation27.Level_3.3.1.0 
Batch 33: jhu-usc.edu_COAD.HumanMethylation27.Level_3.4.1.0 
Batch 36: jhu-usc.edu_COAD.HumanMethylation27.Level_3.5.2.0 
Batch 41: jhu-usc.edu_COAD.HumanMethylation27.Level_3.6.0.0 
Batch 45: jhu-usc.edu_COAD.HumanMethylation27.Level_3.7.0.0 
Batch 66: jhu-usc.edu_COAD.HumanMethylation27.Level_3.8.0.0 
jhu-usc.edu_COAD.HumanMethylation27.mage-tab.1.15.0 
 

Rectal adenocarcinoma samples and normal-adjacent rectum tissues:  
Batch 28: jhu-usc.edu_READ.HumanMethylation27.Level_3.1.2.0 
Batch 29: jhu-usc.edu_READ.HumanMethylation27.Level_3.2.1.0 
Batch 30: jhu-usc.edu_READ.HumanMethylation27.Level_3.3.1.0 
Batch 33: jhu-usc.edu_READ.HumanMethylation27.Level_3.4.1.0 
Batch 36: jhu-usc.edu_READ.HumanMethylation27.Level_3.5.1.0 
Batch 46: jhu-usc.edu_READ.HumanMethylation27.Level_3.6.0.0 

 jhu-usc.edu_READ.HumanMethylation27.mage-tab.1.13.0 
 
See Supplementary Table 1 for a complete map between samples and archives. It should be 
noted that the READ samples for batches 28, 29, 30, 33 and 36 were reorganized in the TCGA 
Data Portal as belonging to Batch 42. This information is also provided in the Description file for 
READ archives 1.2.0, 2.1.0, 3.1.0, 4.1.0 and 5.1.0. 
 
Unsupervised clustering analysis of DNA methylation data.  Statistical analysis and data 
visualization were carried out using the R/Biocoductor software packages 
(http://www.bioconductor.org). We used recursively partitioned mixture model (RPMM) for the 
identification of colorectal tumor subgroups based on the Illumina Infinium DNA methylation 
data. RPMM is a model-based unsupervised clustering approach well-suited for beta-distributed 
DNA methylation measurements which lie between 0 and 1, and implemented as RPMM 
R/Bioconductor package14. We first removed probes which contain any “NA”-masked data 
points and probes that are designed for the sequences on X and Y chromosomes. We then 
performed RPMM clustering on 2,758 probes (10% of all the original probe set) that showed the 
most variable DNA methylation levels based on standard deviations across the colorectal tumor 
panel. A fanny algorithm (a fuzzy clustering algorithm) was used for initialization and level-
weighted version of Bayesian information criterion (BIC) as a split criterion for an existing cluster 
as implemented in the RPMM package. The DNA methylation β-values were represented 
graphically using a heatmap, generated by the R package Heatplus. Ordering of the samples 
within a RPMM class in the heatmaps was obtained by using the seriation R package. 
 
Integration of DNA methylation and gene expression data.  We used Level 3 DNA 
methylation data on 23,094 CpG sites covering 13,387 genes, and Level 3 lowess normalized 
gene expression data set on 17,814 genes generated on the UNC-Agilent 244K custom gene 
expression array platform. These two data sets were merged by gene symbols. A set of 21,325 
Infinium DNA methylation probes associated with 12,329 genes has matched gene expression 
data. We have 238 samples including 223 tumor and 15 adjacent-normal tissue samples that 
have both DNA methylation and expression data. 
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Identification of epigenetically silenced genes in CRC. We determined candidate 
epigenetically silenced genes in CRC using the method previously developed9. Briefly, we 
considered the four criteria each with a relaxed and a stringent thresholds: 1) The mean DNA 
methylation β-value in non-tumor adjacent colonic tissue < 0.5 (relaxed) and < 0.4 (stringent); 2) 
The difference in DNA methylation β-value between the 90th percentile tumor and mean 
adjacent-normal > 0.1 (relaxed) and  > 0.3 (stringent); 3) The fold expression change between 
mean adjacent-normal and mean of the 10% of tumor samples with the highest DNA 
methylation > 1.5 (relaxed) and > 3 (stringent); 4) Spearman’s correlation coefficient between 
DNA methylation and gene expression calculated jointly across 223 tumor and 15 adjacent-
normal tissue samples < –0.2 (relaxed) and < –0.3 (stringent). We required candidate 
epigenetically silenced genes to pass all four relaxed thresholds, and at least three out of four 
more stringent thresholds. If there were multiple probes for the same gene, the probes with the 
highest absolute Spearman’s Rho was retained for that gene. A complete list of the 355 genes 
is shown in Supplementary Table 12, ranked by descending absolute Spearman’s Rho. 

 
Identification of MLH1 epigenetically silenced cases. We assessed the MLH1 DNA 
methylation status in each sample based on the probe (cg00893636) located in the bidirectional 
MLH1/EPM2AIP1 promoter CpG island and closest to the current RefSeq MLH1 transcription 
start sites. DNA methylation at this site showed a strong inverse relationship with MLH1 
expression (Spearman’s Rho = −0.32). We re-scaled the MLH1 expression data between 0 and 
1 (as is presented for DNA methylation β-values). We then performed K-means clustering (K=2) 
on the two-dimensional space of DNA methylation and expression data to classify the 
epigenetically silenced group and non-epigenetically silenced group of samples. 
 

miRNA‐Seq 

Library construction and sequencing. RNA samples, including controls, are arrayed into 96-
well plates and a subset of 12 samples using an Agilent Bioanalyzer RNA nanochip.  
 
Two micrograms of total RNA are separated into mRNA and miRNA fractions. Briefly, total RNA 
is mixed with oligo(dT) Microbeads and loaded into a 96-well MACS column that is placed on a 
MultiMACS separator (Miltenyi Biotec, Germany). The separator’s strong magnetic field allows 
beads to be captured during washes. From the flow-through, small RNAs, including miRNAs, 
are recovered by ethanol precipitation. Quality is checked for a subset of 12 samples using an 
Agilent Bioanalyzer RNA nanochip.  
 
miRNA-Seq libraries are constructed using a British Columbia Genome Sciences Centre 
(BCGSC) plate-based protocol. The RNA recovered from the flow-through is arrayed onto a 96-
well plate with a positive control RNA sample. Negative controls are added at three stages; 
elution buffer is added to two wells when the total RNA is loaded into the plate, water to one well 
just before ligating the 3’ adapter, and water to another well just before PCR. A 3’ adapter is 
ligated using a truncated T4 RNA ligase2 (NEB Canada, cat# M0242L) with an incubation of 1 
hour at 22oC.  This adapter is adenylated, single-strand DNA with the sequence 5’ /5rApp/ 
ATCTCGTATGCCGTCTTCTGCTTGT /3ddC/, which selectively ligates miRNAs. An RNA 5’ 
adapter is then added, with T4 RNA ligase (Ambion USA, Cat#AM2141) and ATP, and is 
incubated at 37oC for 1 hour.  The sequence of the single strand RNA adapter is 
5’GUUCAGAGUUCUACAGUCCGACGAUCUGGUCAA3’.   
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When ligation is complete, 1st strand cDNA is synthesized using Superscript II Reverse 
Transcriptase (Invitrogen, cat#18064 014) and RT primer (5'-
CAAGCAGAAGACGGCATACGAGAT-3’). This is the template for the final library PCR, into 
which we introduce index sequences to enable libraries to be identified from a sequenced pool 
of libraries. Briefly, a PCR brew mix is made with the 3’ PCR primer (5’-
CAAGCAGAAGACGGCATACGAGAT-3’), Phusion Hot Start High Fidelity DNA polymerase 
(NEB Canada, cat# F-540L), buffer, dNTPs and DMSO. The mix is distributed evenly into a new 
96-well plate. A Biomek FX (Beckman Coulter, USA) is used to transfer the PCR template (1st 
strand cDNA) and indexed 5’ PCR primers into the brew mix plate. Each indexed 5’ PCR primer, 
5'-AATGATACGGCGACCACCGACAGNNNNNNGTTCAGAGTTCTACAGTCCGA-3’, contains a 
unique six-nucleotide ‘index’ (shown here as N’s), and is added to each row of the 96-well PCR 
brew plate, resulting in 8 indexed primers being used in each column of the plate. PCR is run at 
98°C for 30 sec, followed by 15 cycles of 98°C for 15 sec, 62°C for 30 sec and 72°C for 15 sec, 
and finally a five min incubation at 72oC. Upon PCR completion, quality is checked for a subset 
of 12 samples using an Agilent Bioanalyzer DNA1000 chip, and is reported as an RNA integrity 
number (RIN). PCR products are pooled by column (8 indices per pool) and are size selected to 
remove larger cDNA fragments and adapter contaminants, using a BCGSC-developed 96-
channel automated size selection robot. After size selection, each pool is ethanol precipitated, 
quality checked using an Agilent Bioanalyzer DNA1000 chip and quantified using a Qubit 
fluorometer (Invitrogen, cat# Q32854).  Each pool of 8 libraries is diluted to a target 
concentration for cluster generation and then is loaded onto a single lane of an Illumina GAiix 
flow cell. Clusters are generated, and a 31bp main read and a 7bp index read are sequenced.  
 
Preprocessing, alignment and annotation. Raw sequence data are preprocessed before 
being analyzed. Briefly, after an initial QC, the data are separated into individual samples by 
matching the index sequence to the start of each through-index read. The index sequence and 
the adapter sequence at the end of each read are removed, and the reads for each sample are 
aligned to the NCBI36 reference genome using BWA15. Below, we describe these steps in more 
detail.  
 
In a routine QC stage, 20% of raw sequences from each 8-way pooled lane are checked for the 
abundance of reads in each indexed sample, and for the proportion of reads that are possibly 
from adapter dimers (i.e. a 5’ adapter joined to a 3’ adapter with no intervening biological 
sequence) or from miRNAs of different species. Sequencing error is estimated independently by 
a method originally developed for SAGE16.  
 
Libraries that pass this QC stage are preprocessed for alignment. The size-selected miRNAs 
vary somewhat in length and tend to be shorter (~20 bp) than the read length. Given this, each 
read sequence extends some distance into the 3' sequencing adapter. Because this non-
biological sequence can interfere with aligning the read to the reference genome, 3’ adaptor 
sequence is identified and removed (trimmed) from a read. The adapter-trimming algorithm 
identifies as long an adapter sequence as possible, allowing a number of mismatches that 
depends on the adapter length found. A typical sequencing run yields several million reads; 
using only the first (5’) 15 bases of the 3’ adapter in trimming makes processing efficient, while 
minimizing the chance that an miRNA read will match the adapter sequence.  
The algorithm first determines whether a read sequence should be discarded as an adapter 
dimer by checking whether the 3’ adapter sequence occurs at the start of the read. For reads 
passing this stage, the algorithm then tries to identify an exact 15-bp match anywhere within the 
read sequence. If it cannot, it then retries, starting from the 3' end, and allowing up to 2 
mismatches. If the full 15bp is not found, decreasing lengths of adapter are checked, down to 
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the first 8 bases, allowing one mismatch. If a match is still not found, from 7 bases down to 1 
base is checked, with an exact match required. Finally, the algorithm will trim 1 base off the 3’ 
end of a read if it happens to match the first base of the adapter. This is based on two 
considerations. First, it is preferable to get a perfect alignment than an alignment that has a 
potential one-base mismatch. Second, if only 1 base of adapter was found in the read 
sequence, the read is likely too long to be from a miRNA and the effect of the trimming on its 
alignment would not affect this sample’s overall miRNA profiling result.  After each read has 
been processed, a summary report is generated containing the number of reads at each read 
length. Because the shortest mature miRNA in miRBase v13 is 15 bp, any trimmed read that is 
shorter than 15bp is discarded; remaining reads are submitted for alignment to the reference 
genome.  Alignment(s) for each read are checked with a series of three filters. A read with more 
than 3 alignments is discarded as too ambiguous. For TCGA quantification reports, only perfect 
alignments with no mismatches are used. Based on comparing expression profiles of test 
libraries (data not shown), reads that fail the Illumina basecalling chastity filter are retained, 
while reads that have soft-clipped BWA CIGAR strings are discarded.  
 
For reads retained after filtering, each coordinate for each read alignment is annotated using the 
reference databases (Supplementary Methods Table 4), and requiring a minimum 3-bp overlap 
between the alignment and an annotation. In annotating reads we address two potential issues. 
First, a single read alignment can overlap feature annotations of different types; second, a read 
can have up to three alignment locations, and each alignment location can overlap a different 
type of feature annotation. By considering heuristically determined priorities (Supplementary 
Methods Table 4), we resolve the first issue by giving each alignment a single annotation. We 
resolve the second by collapsing multiple annotations to a single annotation, as follows.  
 
If a read has more than one alignment location, and the annotations for these are different, we 
use the priorities from Supplementary Methods Table 4 to assign a single annotation to the 
read, as long as only one alignment is to a miRNA. When there are multiple alignments to 
different miRNAs, the read is flagged as cross-mapped, and all of its miRNA annotations are 
preserved, while all of its non-miRNA annotations are discarded. This ensures that all 
annotation information about ambiguously mapped miRNAs is retained, and allows annotation 
ambiguity to be addressed in downstream analyses. Note that we consider miRNAs to be cross-
mapped only if they map to different miRNAs, not to functionally identical miRNAs that are 
expressed from different locations in the genome. Such cases are indicated by miRNA names. 
A miRBase name can have up to 4 separate sections separated by "-", e.g. hsa-mir-26a-1. A 
difference in the final (e.g. ‘-1’) section denotes functionally equivalent miRNAs expressed from 
different regions of the genome, and we consider only the first 3 sections (e.g. ‘hsa-mir-26a’) 
when comparing names. As long as a read maps to multiple miRNAs for which the first 3 
sections of the name are identical (e.g. hsa-mir-26a-1 and hsa-mir-26a-2), it is treated as if it 
maps to only one miRNA, and is not flagged as cross-mapped.  
 
From the profiling results for a tumor type, for a minimum of approximately 100 samples, we 
identify the depth of sequencing required to detect the miRNAs that are expressed in a sample 
by considering a graph of the number of miRNAs detected in a sample as a function of the 
number of reads aligned to miRNAs. For any sequencing run that fails to meet this threshold, 
we sequence the sample again to achieve at least the tumor-specific minimum number of 
miRNA-aligned reads.  
 
Finally, for each sample, the reads that correspond to particular miRNAs are summed and 
normalized to a million miRNA-aligned reads to generate the quantification files that are 

21



W W W. N A T U R E . C O M / N A T U R E  |  2 7

SUPPLEMENTARY INFORMATION RESEARCH

submitted to the DCC. Quantification files include information on variable 5’ and 3’ read 
alignment locations, which can reflect isoforms, adapter trimming and RNA degradation.  

Consensus clustering of miRNAs. Normalized abundance profiles for 255 COAD and READ 
samples were clustered using 200 iterations of NMF v0.5.217, for 3 to 10 clusters. Inspection of 
cophenetic correlation coefficients and overall average silhouette width18 for each clustering 
result suggested that 3 clusters was a preferred result, with 5 and 8 clusters also of interest 
(data not shown). A 3-cluster NMF result was then generated using 1000 iterations, and a 
silhouette plot was generated for this result, using R 2.13.0. 

Batch effects analysis 
We used hierarchical clustering and Principal Components Analysis (PCA) to assess batch 
effects in the colorectal data sets. Five different data sets were analyzed: mRNA expression 
(Agilent G4502A microarray), mRNA expression (RNA-seq Illumina GA), miRNA expression 
(RNA-seq Illumina GA), DNA methylation (Infinium HM27 microarray), and SNPs (GW SNP 6). 
All of the data sets were at TCGA level 3, since that’s the level on which most of the analyses in 
the paper are based. We assessed batch effects with respect to two variables; batch ID and 
Tissue Source Site (TSS). 

For hierarchical clustering, we used the average linkage algorithm with 1 minus the Pearson 
correlation coefficient as the dissimilarity measure. We clustered the samples and then 
annotated them with colored bars at the bottom. Each color corresponded to a batch ID or a 
TSS. For PCA, we plotted the first four principal components, but only plots of the first two 
components are shown here. To make it easier to assess batch effects, we enhanced the 
traditional PCA plot with centroids. Points representing samples with the same batch ID (or TSS) 
were connected to the batch centroid by lines. The centroids were computed by taking the mean 
across all samples in the batch. That procedure produced a visual representation of the 
relationships among batch centroids in relation to the scatter within batches. For the CRC data 
sets, if both hierarchical clustering and PCA suggested a batch effect, we studied that effect 
more closely (see batch 29 in the Conclusions section, for example). The results for the five 
data sets follow. 

mRNA Expression (Agilent G4502A microarray). Supplementary Methods Figures 2-4 show 
clustering and PCA plots for the Agilent G4502A mRNA expression platform. We noticed that 
batch 29 stood out from the others (yellow cluster in top left of Suppl. Methods Fig. 3). Both 
clustering and PCA plots flagged batch 29 as distinct from the others. Overall, the samples from 
Christiana Healthcare, for instance (red cluster in Suppl. Methods Fig. 4.), mixed in with 
samples from Indivumed (green cluster in Suppl. Methods Fig. 4) and didn’t stand out in its own 
cluster in Suppl. Methods Fig. 2. Batch 30 seemed somewhat distinct in Suppl. Methods Fig. 3 
but didn’t cluster separately in Suppl. Methods Fig. 2. But batch 29 consistently stood out when 
the other data types were analyzed. More results and discussion of batch 29 follow. 
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Legends 

 

 

Suppl. Methods Fig. 2. Hierarchical 
clustering plot for mRNA expression (Agilent 
microarray) 

Suppl. Methods Fig. 3. PCA: First two 
principal components for mRNA expression 
(microarray), with samples connected by 
centroids according to batch ID.

 

Suppl. Methods Fig. 4. PCA: First two 
principal components for mRNA expression 
(microarray), with samples connected by 
centroids according to TSS. 

mRNA  expression  (RNA‐seq  Illumina  GA).  The following figures show clustering and PCA 
plots for the RNA-seq platform. Genes with zero values were removed and the RPKM values 
were log2-transformed before generating the figures. Once again, batch 29 (yellow samples on 
the bottom in Suppl. Methods Fig. 6) stood out from the rest. The other batches or TSSs didn’t 
stand out in either clustering or PCA plots. 
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Legends 

 

 

Suppl. Methods Fig. 5. Hierarchical clustering 
for mRNA expression from RNA-seq data 

Suppl. Methods Fig. 6. PCA: First two 
principal components for RNA-seq, with 
samples connected by centroids according 
to batch ID.

 

Su
ppl. Methods Fig. 7. PCA: First two principal 
components for RNA-seq, with samples 
connected by centroids according to TSS. 

mRNA  expression  (RNA‐seq  Illumina  GA).  The following figures show clustering and PCA 
plots for RNA-seq miRNA data. Genes with zero values were removed and the read counts 
were log2-transformed before generating the figures. 

Unlike the other data types, miRNA expression does not show batch 29 to be distinct. MSKCC 
as a TSS appears distinct in Suppl. Methods Fig. 10 (pink cluster on the left). However, MSKCC 
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does not cluster separately in Suppl. Methods Fig. 8, so we were not too concerned about it. 
None of the other batches and TSSs stood out in either clustering or PCA plots.  

 

Legends 

 

 

 

Suppl. Methods Fig. 8. Hierarchical 
clustering of samples for miRNA 
expression from RNA-seq data.

 

Suppl. Methods Fig. 9. PCA: First two principal 
components for miRNA expression from RNA-
seq data, with samples connected by centroids 
according to batch ID. 

Suppl. Methods Fig. 10. PCA: First two 
principal components for miRNA expression 
from RNA-seq data, with samples connected 
by centroids according to TSS. 
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DNA Methylation  (Infinium HM27 microarray).  The following figures show clustering and 
PCA plots for the Infinium DNA methylation platform. Batch 29 stands out in Suppl. Methods Fig. 
12 (but not in Suppl. Methods Fig. 11). None of the other batches or TSSs stood out in either 
clustering or PCA plots. 

 

 

Legends 

 

   

 

Suppl. Methods Fig. 11. Hierarchical 
clustering plot for DNA methylation 
data. 

 

Suppl. Methods Fig. 12. PCA for DNA 
methylation, with samples connected by 
centroids according to batch ID. 

 

Suppl. Methods Fig. 13. PCA for DNA 
methylation, with samples connected by 
centroids according to TSS. 
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SNPs  (GW  SNP  6).  The following figures show clustering and PCA plots for the SNP platform. 
At level 3, the TCGA SNP data resemble copy number data when we use chromosomal 
segment counts (rather than actual SNPs). We mapped the chromosomal segments to genes 
(using build hg18) and then used them to construct the plots shown in Suppl. Methods Figs. 14-
16. Batch 29 once again stands out in the PCA plot in Suppl. Methods Fig. 14 (yellow cluster on 
the left). 

 

Legends 

 

 

 

Suppl. Methods Fig. 14. 
Hierarchical clustering plot for SNP 
data. 

 

Suppl. Methods Fig. 15. PCA for SNPs, with 
samples connected by centroids according to 
batch ID. 

 

 

Suppl. Methods Fig. 16. PCA for SNPs, 
with samples connected by centroids 
according to TSS. 

Conclusions.  Batch 29 appears distinct from the others in 4 out of 5 data sets: mRNA 
expression (microarray), mRNA expression (RNASeq), DNA methylation, and SNP data sets. As 
of the writing of this manuscript, there were 7 samples in batch 29 (except SNP, which had 12). 
We believe that the differences seen between batch 29 and the others are biological, rather 
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than technical, because (i) batch 29 has been found to consist entirely of MSI/CIMP subtype 
samples, (ii) batch 29 appears to be distinct across several different platforms, and (iii) both 
DNA and RNA data types show differences. Consequently, we did not try to apply computational 
batch effects correction to Batch 29. 

None of the other batches or Tissue Source Sites (TSS) in any data set showed consistent 
batch effects in both clustering and PCA algorithms. Some batches or TSSs stood out in one 
algorithm or the other, but not both, reducing our concern about them. Based on the above 
figures, we believe that technical batch effects in the data sets are reasonably small and unlikely 
to influence high-level analyses in a major way. 

Integrated Analysis 

Curated Pathway Analysis 
We analyzed several pathways that are generally altered in different cancer types, specifically 
the RAS/PI3K, WNT, TGF-beta, and p53 signaling pathways. For all pathway analyses, we 
used the set of cases (N=195) with complete data (mRNA expression, DNA copy-number, 
methylation, and protein mutations). All analyses were further stratified by hypermutation status, 
resulting in a set of 165 non-hypermutated and 30 hypermutated samples. 

We used two approaches to identify altered pathways: 

1. An algorithmic approach using MEMo19 
2. A focused analysis of pathways known to be frequently altered in cancer 

 
Both methods rely on the general abstraction of gene alterations per sample. We used the 
following approach to determine whether a particular gene was altered or not altered in a 
particular sample.  Our approach was based on first examining each gene across all samples, 
and binning each gene into one of four categories: 

• Category 1:  Gene is altered by mutations. 
• Category 2:  Gene is primarily altered by copy number alterations, and mRNA 

expression levels correlate with copy number changes. 
• Category 3:  Gene has evidence of a bimodal expression pattern, unrelated to copy 

number status. 
 

We then used different alteration criteria for each of the four categories.  For example, for 
Category 2 genes, we classified each gene as a likely oncogene or tumor suppressor, and a 
gene was called altered in a specific sample if the gene was altered by a high level copy-
number amplification or putative homozygous deletion (as defined by GISTIC).  Finally, for 
category 3 genes, alteration status was defined by relative expression compared to the 
expression distribution in tumor samples diploid in the particular gene, ≥ one standard deviation.  
In all categories, a gene was called altered if the gene contained a non-synonymous, somatic 
mutation in a protein-coding region.   

A pathway was considered altered in a given sample, if at least one gene in the pathway was 
altered. 
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Supplementary Methods Figure 17. Assessment of gene alterations used in pathway analysis. 

 

MEMo: Mutual Exclusivity Modules in Cancer. To identify mutually exclusive alterations in 
colorectal cancer, we ran the MEMo algorithm on the set of non-hypermutated samples. The 
input data consisted of copy-number altered regions of interest (ROIs) determined by GISTIC, 
significantly mutated genes determined by MutSig (q < .05), and IGF2 over-expression status. 
Because IGF2 was not present in the default reference network from PathwayCommons 
(http://www.pathwaycommons.org), we added IGF2 as a novel node connected to IGF1R. With 
these settings, MEMo identified only one module with significantly mutually exclusive events (p* 
< 10-2), which included four genes: IGF2, PIK3CA, PTEN, and ERBB2 (Supplementary Table 
5). This result suggests that IGF2 could be an activator of the RTK/PI-3-K cascade in colorectal 
cancer.  

Pathway analysis using PARADIGM 
 
Data sets. TCGA COAD and READ data was obtained from the TCGA DCC. TCGA gene 
expression data was median probe centered within each disease cohort. Within each cohort, 
data was rank transformed to signed –log10 p-values.  
 
Pathways were obtained in BioPax Level 2 format from http://pid.nci.nih.gov/ and included NCI-
PID, Reactome, and BioCarta databases.  Interactions from all of these sources were then 
combined into a merged Superimposed Pathway (SuperPathway). Genes, complexes, and 
abstract processes (e.g. “cell cycle” and “apoptosis”) were retained and henceforth referred to 
collectively as pathway concepts. Before merging gene concepts, all gene identifiers were 
translated into HUGO standard identifiers wherever possible. The belief propagation algorithm 
employed by PARADIGM can be run with cycles and contradictory interactions. Therefore, for 
the sake of completeness and simplicity, all interactions were included and no attempt was 
made to resolve conflicting influences if they existed in the resulting SuperPathway. A breadth-
first traversal starting from the concept with the highest number of interactions was performed to 
build one single component. The resulting merged pathway structure contained a total of 8939 
concepts representing 3524 proteins, 4865 complexes, and 550 processes. 
 
Integrated pathway analysis. Integration of copy number, gene expression, and pathway 
interaction data was performed using the PARADIGM software20. Briefly, this procedure infers 
integrated pathway levels (IPLs) for genes, complexes, and processes using pathway 
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interactions and genomic and functional genomic data from a single patient sample. 
PARADIGM EM Parameters were trained on the colon and rectal cohorts independently and 
then combined using sufficient statistic counts. 
 
Clustering genes and patient samples using PARADIGM pathway levels. 

To provide an overview of the results of the PARADIGM inference, we generated a clustered 
heatmap in which we plotted genes by samples according to the inferred pathway activities. 
First, to avoid any biases in the clustering due to the different sizes of the pathways and 
differing levels of concepts and abstract processes across the SuperPathway, we extracted the 
data only for the gene concepts for cluster analysis. The inferences can be interpreted a 
compact summary of a gene’s activity given the copy number, expression and surrounding 
regulatory neighborhood of the gene. 
 
We first clustered the genes using hierarchical cluster analysis (HCA) as encoded in the Eisen 
software package21. We then produced 50 gene clusters by cutting the HCA tree using the 
cuttree program available in the R programming environment. Rather than including all of the 
genes for use in clustering the samples, we instead used mediods from each of the 50 clusters. 
This procedure avoids any overrepresentation biases that might be present among the genes 
for driving the sample clustering. For example, large complexes such as the ribosome, or gene 
families such as the olfactory receptors, can exert a large influence on the sample clustering 
simply due to the large number of coregulated members. Using the cluster mediods mitigates 
the effect of such large regulons on sample clustering. We then used the mediods to cluster the 
tumor samples again using HCA (Figure 5; Supplementary Table 9).  
 
To label the clusters, we performed enrichment analysis on the gene clusters by overlapping the 
50 distinct clusters with the sets of genes belonging to the constituent pathways used to build 
the SuperPathway. We were then able to label each cluster according to the constituent 
pathway that had the highest representation as determined by a hypergeometric overlap 
analysis. Genes could then also be labelled by the constituent pathway in which they reside. If a 
gene resided in multiple constituent pathways then we chose to use the one that was most 
enriched in the gene’s cluster. Samples are also annotated in a similar way based on any 
clinical information available for the sample. To perform overrepresentation analysis on the 
clinical information, we forced the samples into ten sample clusters using the cuttree method. 
Samples could then be annotated with the clinical information that was most significantly 
enriched in the sample’s cluster according to the hypergeometric overlap test (Supplementary 
Table 9). 
 
To learn what pathway activities might be specific to CRC or shared with other cancers, we 
compared the CRC PARADIGM results to those obtained for glioblastoma multiform (GBM) and 
ovarian cysadenocarcinoma (OVCA). GBM and OVCA datasets were obtained and processed 
in the same manner as the CRC cohort using identical normalization steps and PARADIGM 
parameter settings. All data for GBM was downloaded on July 2, 2011 and for OVCA on July 3, 
2011 from the DCC. This included genome-wide SNP 6 copy number data for 527 GBM and 
529 OVCA samples and AgilentG4502A gene expression data for 337 GBM and 439 OVCA 
tumor samples. 283 GBM and 377 OVCA samples with both expression and copy number were 
available for integrated analysis at the time of data ingestion. The GBM and OVCA datasets 
were clustered in the following way. GBM and OVCA clustered datasets were derived using the 
same procedure as was used for the CRC clusters (i.e. 50 gene cluster mediods were first 
determined with HCA followed by HCA sample clustering using these mediods). However, the 
gene clusterings determined by the CRC clustering was then projected onto the GBM and 
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OVCA datasets so that any coordination of gene activity present in CRC and reflected in GBM 
or OVCA could be visualized.  
 
Detection of pathway concepts with significantly altered activities 
We asked whether a particular pathway concept was found to have inferred activities frequently 
higher or lower than normal in a significantly high proportion of the cohort of colonic and rectal 
tumor samples. First, we created a null distribution of pathway concept activities by simulating 
1000 random patient samples. The pathway structure was preserved in the simulation so that all 
topological network properties would be preserved in the random control. Data tuples 
corresponding to a gene’s copy number, expression, methylation, and mutation status were also 
kept together in the permutation and swapped with whole tuples so that any correlation structure 
present between the different measurements was preserved in the control. PARADIGM was 
then run on the randomly generated patient samples to produce a distribution of pathway 
concept activities. Pathway concepts were excluded from further analysis if they did not obtain a 
minimum IPL of 0.5 in at least a single patient sample both observed or simulated. 
 
For each sample-concept pair a Z-score (IPZ) was computed between the PARADIGM IPL and 
the mean and standard deviation of the 1000 IPLs derived from the permuted samples for that 
particular concept. For each concept, a single modulation score was computed as the mean of 
the IPZs across the entire cohort for that concept. This yields extreme scores for concepts 
perturbed in the same direction across the majority of the cohort. 
 
We asked whether these concepts with high modulation scores reside in connected networks. If 
so it might reflect a common mechanism in colorectal tumors that distinguish the cancer from 
the normal tissue state. To do this, we retained any regulatory interactions in the SuperPathway 
that interlinked two concepts found to have a modulation score more extreme than the average 
absolute level of all modulation scores. This produced a network with 2713 concepts connected 
by 3687 relations. To visualize the network of modulated pathway concepts, we created a 
network session that can be loaded into the Cytoscape visualization tool22. The node size, color, 
and opacity were set as functions of each concept’s modulation score. All data to reproduce the 
PARADIGM pathway analysis are available in Supplementary Data File 1 and electronic 
versions of all Cytoscape sessions are available in Supplementary Data File 2 at http://tcga-
data.nci.nih.gov/docs/publications/coadread_2012/. 
 
 
Pathway signatures for hypermutation and CIMP. One of the stark differences between 
the samples is the overall mutation frequency. In some samples the rate is as high as 
thousands per exome while in other samples it is fewer than one hundred. To shed light on the 
pathways that may either be the result or consequence of the observed hypermutation 
phenotype, we searched for pathway signatures in the SuperPathway using the TCGA 
consortium’s definitions of hypermuted versus non-hypermutated. One hypothesis is that the 
CpG island methylation leads to epigenomic silencing of mismatch repair genes, most notably 
MLH1, which in turn leads to an associated accumulation of mutations. However, a small 
proportion of patient samples exist that do not fit this general rule. We therefore used the 
inferred PARADIGM pathway activities to search for mechanisms intrinsic to the hypermutation 
phenotype irrespective of CIMP status. Vice versa, we also searched for activities associated 
with CIMP irrespective of hypermutation.  
 
We asked whether we could identify subnetworks of concepts from the SuperPathway that 
could serve collectively as markers for clinically relevant subgroups of patient samples. Here we 
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define a “pathway marker map” (PMM) as a subnetwork of interconnected concepts whose 
activities across the patient samples are correlated, either positively or negatively, with a 
phenotype of interest. We identified such a map using a two-step process. First, a “marker 
score” was computed for each concept in the SuperPathway that reflects the degree to which 
the concept is correlated with CIMP (or hypermutation) status across the cohort of patient 
samples. Because many variables are correlated with hypermutation and CIMP and obfuscate 
the correlation of a concept’s inferred activity, we used a linear model to remove the effect of 
confounding variables.  
We applied the following linear model before computing the correlation to hypermutation or 
CIMP: 

yij = βk xijk +ε ij
k=1

K

∑ , 

where the βk coefficients correspond to the intercept and any of K different confounding 
variables. These included: age at initial pathologic diagnosis, anatomic origin subdivision, 
distant metastases pathologic spread, gender, histological type, history of colon polyps, loss 
expression of mismatch repair proteins by IHC, lymph node pathologic spread, number of first 
degree relatives with cancer diagnosis, primary tumor pathologic spread, prior diagnosis, 
residual tumor, tumor stage, tumor tissue site, vascular invasion present, the cluster inferred 
from mRNA transcriptional profiling, the fraction of the genome altered, tumor purity, and finally 
mutation status in KRAS, BRAF, TP53, APC, PIK3CA, or FBXW7. 
 
A linear model was fit separately for CIMP and hypermutation. For the CIMP model, two 
additional variables were included as confounders: the hypermutated status as well as an 
indicator denoting which samples had loss of expression in mismatch repair proteins as 
determined by immunohistochemistry. For hypermutation markers, the methylation cluster was 
included as a confounding variable. Thus, the maps derived for CIMP and hypermutation should 
better reflect mechanisms intrinsic to either CIMP or hypermutation in an effort to tease apart 
the differences in these phenomena. Marker scores were computed by correlating the residuals 
derived after fitting the above linear model with either CIMP or hypermutated status. 
 
We then constructed the PMM by collecting all interactions from the SuperPathway that link 
together a pair of pathway concepts having absolute marker scores greater than average 
among all concepts. Because the original inferences were derived from an underlying 
connected network, it is possible that the observed subnetworks of interconnected markers 
arise from serendipitous but random associations simply due to PARADIGM’s belief propagation 
framework. We therefore asked whether the observed PMMs are significant. If the 
interconnection among the genes in the PMM are indeed associated with the CIMP (or 
hypermutated) status of colorectal tumors, then one would expect that the size of the 
subnetworks would be larger than those obtained in which the patient data is randomly 
permuted around the SuperPathway. We indeed find that the observed largest connected sub-
pathway is significantly larger than expected by chance for both the CIMP and hypermutation 
PMMs.  
 
We assessed the significance of the pathway marker maps using randomly simulated patients. 
We constructed 1000 random assignments of labels to the random patient samples so that the 
sizes matched those of the observed assignments. We then assessed significance in two ways. 
First, we asked whether the identified pathway signature had more concepts than expected by 
chance. Given that a pathway signature was significant in terms of size, we then asked if it 
interconnected concepts in higher proportions than randomly derived sub-pathways of the same 
size. The number of incoming and outgoing links for a concept was computed as the concept’s 
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degree. The degree distribution of the observed network was plotted against those randomly 
generated. We determined if the observed degree distribution was higher than seen in the 
background by applying a Kolmogorov-Smirnov test to these two distributions.  
 
 

Data Fusion Method for Identifying Molecular Signatures of Tumor Aggression 

Feature Matrix. In preparation for identifying molecular signatures associated with tumor 
aggressiveness, a “feature matrix” was constructed, with a row for each of the 276 tumor 
samples and columns containing all available clinical, sample, and molecular data for each 
sample: protein-coding gene expression levels, microRNA expression levels, copy number 
alterations, DNA methylation levels, somatic mutations, and PARADIGM integrated pathway 
levels (IPLs). Data was retrieved from DCC archives dated up to and including Feb 2, 2012.  
Each column represents a single clinical, sample, or molecular feature. The columns were 
constructed as follows. Clinical and sample data (78 features):  Tumor stage was included as 
per Supplementary Methods Table1, in which values were derived from AJCC Cancer Staging 
Manual, 7th edition and TNM classification where available. Tumor stage was further grouped 
into early stage (Stage I and II) and late stage (Stage III and IV). The MSI values in 
Supplementary Methods Table 1 were also included. Gene expression (20,503): Gene level 
RPKM values from RNA-seq (described above, RNA-Seq Data Processing Workflow) were log2 
transformed. microRNA expression (705): The summed and normalized microRNA 
quantification files described above (miRNA-Seq) were log2 transformed. Somatic copy number 
alterations (106): Broad copy number and focal copy number changes were obtained for peaks 
identified by GISTIC as described above (SNP Based Copy Number Analysis). DNA methylation 
(23,094): Probe-specific Level 3 β-values were obtained as described above (DNA Methylation 
Profiling). Somatic mutations (6,006): From the Mutations Annotation Format (MAF) file, several 
features were generated for each gene, depending on the type and sequence position of 
somatic mutations. Mutation types considered were synonymous, missense, nonsense, and 
frameshift.  Protein domains (InterPro) including any of these mutation types were annotated as 
such, with nonsense and frameshift annotations being propagated to all subsequent protein 
domains. Each available annotation was used to generate a binary indicator vector indicating 
whether a particular mutation (e.g. a nonsense or frameshift mutation affecting Armadillo 
Repeat 1 in APC) is present in a specific sample. Mutation features found in fewer than three 
tumor samples were removed. PARADIGM (14,168): IPLs (see above: Pathway Analysis using 
PARADIGM) were used as features. The resulting feature matrix for molecular data types 
contains 276 rows and 64,582 columns.   Thus, the selection for molecular signatures 
associated with tumor aggressiveness is among 64,582 variables. 

For assessing associations between genes and tumor aggressiveness, molecular features were 
selected on the basis of statistical association with a composite clinical signature consisting of 
the combination of data for six clinical variables: Lymphatic Invasion Present (No/Yes), Vascular 
Invasion Present (No/Yes), Histological Type (Non-mucinous or mucinous adenocarcinoma), 
Fraction Lymphnodes Positive by HE, Tumor Stage, and Distant Metastasis (M0,M1). The 
composite p-value was obtained the using the CDF of the χ2-distribution with 2⋅6=12 degrees of 
freedom, applied weighted version of Fishers’ combined statistic for combining p-values23. 

χ2 = −2 wi loge (pi)i=1

6∑  
Weights wi were used to balance contributions from each of the clinical variables. For each data 
type, the reciprocal of the mean value of loge(pi) over all molecular signatures was computed for 
every clinical variable i, and these were then rescaled so as to sum to unity to give the weights 
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wi. The individual comparison p-values, pi, for the association between an individual clinical and 
molecular feature was computed according to the nature of the data levels of the pair: discrete-
discrete (Fisher’s exact test); discrete-continuous (ANOVA F-test, equivalently t-test for binary-
continuous) or continuous-continuous (F-test). Ranked measurements were used in each case.  
To assess the possible effect of intra-correlation among clinical variables on the selection 
procedure we used the truncated product method applied to dependent p-values24. To transform 
the p-values (Eq.(5), Ref. 24) the correlation matrix among the values  of clinical variables over 
all samples was used. To account for multiple-testing bias the composite p-value was adjusted 
to minimize false discovery rates using the Benjamini and Hochberg procedure25. Features with 
composite p-value less than 0.001 were selected. 
 
A selected variable was classified as a marker for aggressiveness if the clinical data trended 
towards aggressive signature for every pi< 0.05, and conversely as non-aggressive marker 
when opposite trending was observed.  For all clinical variables but histological type, 
aggressiveness corresponds to an increase in the value of that variable. The small minority of 
molecular signatures (0.8%) that showed an inconsistent trend among clinical variables was 
discarded.  
 
A software tool to explore the clinical correlates of colorectal cancer in the genomic context is 
available at http://explorer.cancerregulome.org. 
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Supplementary Methods Tables 

Supplementary Methods Table 1 ‐ TCGA Platforms 

Platform Code Platform Name 
Data Types (Base type-
Specific type) 

CGH-1x1M_G4447A 
Agilent SurePrint G3 Human CGH 
Microarray Kit 1x1M CGH-Copy Number Results 

HG-CGH-244A 
Agilent Human Genome CGH 
Microarray 244A CGH-Copy Number Results 
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HG-CGH-
415K_G4124A 

Agilent Human Genome CGH Custom 
Microarray 2x415K CGH-Copy Number Results 

HumanMethylation27 
Illumina Infinium Human DNA 
Methylation 27 DNA Methylation 

IlluminaDNAMethylation 
Illumina DNA Methylation (OMA002 
and OMA003) Cancer Panel I DNA Methylation 

AgilentG4502A_07 
Agilent 244K Custom Gene 
Expression G4502A-07-(1,2, and 3) Expression-Gene 

HT_HG-U133A 
Affymetrix HT Human Genome U133 
Array Plate Set Expression-Gene 

HuEx-1_0-st-v2 Affymetrix Human Exon 1.0 ST Array 
Expression-Gene, 
Expression-Exon 

IlluminaGA_mRNA_DG
E 

Illumina Genome Analyzer mRNA 
Digital Gene Expression Expression-Gene 

IlluminaGA_RNASeq 
Illumina Genome Analyzer RNA 
Sequencing 

Expression-Gene, 
Expression-Exon, 
Expression-Junction 

IlluminaGA_miRNASeq 
Illumina Genome Analyzer miRNA 
Sequencing 

Expression-miRNA, 
Expression-miRNA Isoform 

H-miRNA_8x15K 
Agilent 8 x 15K Human miRNA-
specific microarray Expression-miRNA 

IlluminaGA_DNASeq 
Illumina Genome Analyzer DNA 
Sequencing DNA Sequence Mutations 

SOLiD_DNASeq ABI SOLiD DNA System Sequencing DNA Sequence Mutations 

Genome_Wide_SNP_6 
Affymetrix Genome-Wide Human 
SNP Array 6.0 

SNP-Copy Number Results, 
SNP-SNP, SNP-LOH 

Human1MDuo Illumina Human1M-Duo BeadChip 
SNP-Copy Number Results, 
SNP-SNP, SNP-LOH 

HumanHap550 
Illumina 550K Infinium HumanHap550 
SNP Chip 

SNP-Copy Number Results, 
SNP-SNP, SNP-LOH 

bio 
Biospecimen Metadata - Complete 
Set Clinical-Complete Set 

minbio Biospecimen Metadata - Minimal Set Clinical-Minimal Set 
 

Definitions of the data type terms in this table may be found online in the TCGA Encyclopedia 
(https://wiki.nci.nih.gov/x/bCZhAg), or by request to TCGA-DCC-BINF-L@list.nih.gov. 

Supplementary Methods Table 2 – TCGA Data Types 

Data Type 
(Base-
Specific)

Level
1
(Raw) 

Level 2 
(Normalized/Processed)

Level 3 
(Interpreted/Segmented) 

Level 4 
(Summary
Finding/Region
of Interest 
results)

Clinical-
Complete 
Set 

Clinical 
data 
for 1 
patient NA NA NA 

Clinical-
Minimal Set 

Clinical 
data NA NA NA 
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for 1 
patient 

CGH-Copy 
Number 
Results 

Raw 
signals 
per 
probe 

Normalized signals for 
copy number alterations 
of aggregated regions, 
per probe or probe set 

Copy number alterations 
for 
aggregated/segmented 
regions, per sample 

Regions with 
statistically 
significant copy 
number 
changes across 
samples 

SNP-Copy 
Number 
Results NA 

Copy number alterations 
per probe or probe set 

Copy number alterations 
for 
aggregated/segmented 
regions, per sample 

Regions with 
statistically 
significant copy 
number 
changes across 
samples  

SNP-LOH NA LOH calls per probe set 
Aggregation of regions of 
LOH per sample 

Statistically 
significant LOH 
across samples 

SNP 

Raw 
signals 
per 
probe  

Normalized signals per 
probe or probe set and 
allele calls  NA 

Statistically 
significant 
SNPs across 
samples 

DNA 
Methylation 

Raw 
signals 
per 
probe  

Normalized signals per 
probe or probe set 

Methylated sites/genes 
per sample 

Statistically 
significant 
Methylated 
sites/genes 
across samples 

Expression-
Exon 

[Array] 
Raw 
signals 
per 
probe  

[Array] Normalized 
signals per probe or 
probe set 

[Array & RNA-Seq] 
Expression calls for 
Exons/Variants per 
sample 

Statistically 
significant 
exons/variants 
across samples 

Expression-
Gene 

[Array] 
Raw 
signals 
per 
probe  

[Array] Normalized 
signals per probe or 
probe set 

[Array & RNA-Seq] 
Expression calls for 
Genes per sample 

Statistically 
significant 
genes across 
samples 

Expression-
Junction NA NA 

Expression calls for splice 
junctions per sample 

Statistically 
significant 
splice junctions 
across samples 

Expression-
miRNA 

[Array] 
Raw 
signals 
per 
probe  

[Array] Normalized 
signals per probe or 
probe set 

[Array & miRNA-Seq] 
Expression calls for 
miRNAs per sample 

Statistically 
significant 
miRNAs across 
samples 

Expression-
miRNA 
Isoforms NA NA 

Expression calls for 
miRNA Isoforms per 
sample 

Statistically 
significant 
miRNA 
Isoforms across 
samples 
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DNA 
Sequence 
Mutations NA Putative mutations 

Validated somatic 
mutations 

Statistically 
significant 
mutations 
across samples 

 
Data Types are those listed in Supplementary Methods Tables 
Supplementary Methods Table 1. Descriptions of data levels are listed in Supplementary Methods 
Table 3. Some data levels are not applicable (NA) to particular data types. Italicized data type-
data level descriptions indicate that some centers do not produce that data level for its 
corresponding data type and platform.  
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Supplementary Methods Table 3 ‐ TCGA Data Levels 
Level Number Level Type Description Example

1 Raw 

Low-level data for a 
single sample, not 
normalized across 
samples, and not 
interpreted for the 
presence or absence of 
specific molecular 
abnormalities.  

Affymetrix .CEL file; BAM 
binary sequence data file 
Putative mutation call for 
a single sample; 
amplification/deletion/LOH 
signal for a probed locus 
in a sample; expression 
signal of a probe or probe 
set for a sample 2 Normalized/Processed 

Data for a single sample 
that has been 
normalized and 
interpreted for the 
presence or absence of 
specific molecular 
events.  

Validated mutation call for 
a single sample; 
amplification/deletion/LOH 
signal of a region in the 
genome for a sample; 
expression signal of a 
gene for a sample 3 Segmented/Interpreted

Data for a single sample 
that has been further 
analyzed to aggregate 
individual probed loci 
into larger composite or 
contiguous regions.  

4 
Summary Finding 
(ROI) 

A quantified association, 
across classes of 
samples, among two or 
more specific molecular 
abnormalities, sample 
characteristics, or 
clinical variables.  

A finding that a particular 
genomic region (a “region 
of interest”) is found to be 
amplified in 10% of TCGA 
glioma samples. 
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Supplementary Methods Table 4 ‐ miRNA Annotation Priorities 
Priority Annotation type Database 

miRBase v13 1 
2 
3 
4 
 
5 
 

mature strand 
star strand 
precursor miRNA 
stemloop, from 1 to 6 bases outside the mature strand, 
between the mature and star strands 
"unannotated", any region other than the mature strand 
in miRNAs where there is no star strand annotated 

UCSC small RNAs, 
RepeatMasker 

6 
7 
8 
9 
10 
11 
12 

snoRNA 
tRNA 
rRNA 
snRNA 
scRNA 
srpRNA 
Other RNA repeats  

13 
14 
15 
16 
17 

coding exons with zero annotated CDS region length 
3' UTR 
5' UTR 
coding exon 
intron 

UCSC knownGenes 
 

UCSC 
RepeatMasker  

18 
19 
20 
21 
22 
23 
24 
25 
26 

LINE  
SINE 
LTR 
Satellite 
RepeatMasker DNA 
RepeatMasker Low complexity 
RepeatMasker Simple Repeat 
RepeatMasker Other 
RepeatMasker Unknown 

 
This table describes the annotation priorities used to resolve multiple database matches of 
miRNA for a single alignment location and multiple alignment locations for a read. 
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Supplementary figure 4. Sample groups identified from miRNA abundance profiles. Consensus metaheatmap for three 
sample groups identified from miRNA-seq abundance profiles for 255 COAD/READ tumor samples. NMF consensus 
clustering (Gaujoux and Seoighe 2010) was applied to a normalized abundance matrix for the 25% most variant mature 
or star strands (221 MIMATs). The legend colours and dendrogram reflect per-sample cluster membership over 1000 
iterations. Tracks under the heatmap show NMF clusters, COAD vs. READ sample types, then sample classifications 
from DNA methylation clusters: CIMP-H, CIMP-L, cluster 3 and cluster 4. 

Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010;11:367.
Rousseeuw PJ (1987), “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis,” Journal of 
Computational and Applied Mathematics, 20, 53–65.
R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. ISBN 3-900051-07-0, UR L http://www.R-project.org/.

Method
For 2259 TCGA tumor and normal samples, abundance profiles were normalized to 1 M reads mapped to miRBase v16 
MIMAT i.e. mature or star strand annotations, and samples were clustered with R v2.12.1’s hclust function (R 
Development Core Team, 2011), using a Spearman correlation coefficient as a profile similarity metric. Then, normalized 
abundance profiles for 255 COAD and READ samples were clustered using 200 iterations of NMF v0.5.2 (Gaujoux and 
Seoighe 2010), for 3 to 10 clusters, and a silhouette plot (Rousseeuw 1987) was calculated for each cluster result, again 
using R v2.12.1. Inspection of cophenetic correlation coefficients and overall average silhouette width for each 
clustering result suggested that 3 clusters was a preferred result, with 5 and 8 clusters also of interest (data not shown). 
A 3-cluster NMF result was then generated using 1000 iterations, and a silhouette plot was generated for this result, 
using R 2.13.0.
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